
 

 

 

 

Abstract—Iterative Closest Point (ICP) is a widely exploited 

method for point registration that is based on binary point-to-

point assignments, whereas the Expectation Conditional 

Maximization (ECM) algorithm tries to solve the problem of 

point registration within the framework of maximum likelihood 

with point-to-cluster matching. 

In this paper, by fulfilling the implementation of both 

algorithms as well as conducting experiments in a scenario 

where dozens of model points must be registered with 

thousands of observation points on a pelvis model, we 

investigated and compared the performance (e.g. accuracy and 

robustness) of both ICP and ECM for point registration in 

cases without noise and with Gaussian white noise. 

The experiment results reveal that the ECM method is much 

less sensitive to initialization and is able to achieve more 

consistent estimations of the transformation parameters than 

the ICP algorithm, since the latter easily sinks into local 

minima and leads to quite different registration results with 

respect to different initializations. Both algorithms can reach 

the high registration accuracy at the same level, however, the 

ICP method usually requires an appropriate initialization to 

converge globally. In the presence of Gaussian white noise, it is 

observed in experiments that ECM is less efficient but more 

robust than ICP. 

I. INTRODUCTION 

HE Iterative Closest Point (ICP) method as well as its 

numerous variants are widely used for point registration 

[1]-[2]. It alternates between binary point-to-point 

correspondence searching and optimal transformation 

estimation, and works efficiently [3]. However, due to its 

strict binary selection of point-to-point assignments, ICP is 

easily trapped in local minima and thus, is quite sensitive to 

initializations and the acceptance/rejection threshold of an 

assignment [3]. For instance, the ICP algorithm is employed 

in [2] for point registration, where the inconsistency of 

registration results with respect to different initializations is 

noticeable, because of the existence of different local 

minima. 

Probabilistic methods are other important options for 

point registration. By utilizing generally a Gaussian Mixture 

Model (GMM), they transform the point-to-point matching 

problem into the scope of maximum likelihood with missing 
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data (the point-to-cluster assignments) [3]. Although the 

Expectation Maximization (EM) algorithm can be chosen to 

solve such a maximum likelihood problem, i.e. estimation of 

the mixture parameters and the missing data, casting of point 

registration problems in EM framework remains intrinsically 

difficult [3]. 

Therefore, Horaud et al. proposed an Expectation 

Conditional Maximization (ECM) algorithm instead of the 

EM method to solve the point registration problem within 

the framework of maximum likelihood with missing data. In 

ECM, each M-step is replaced by a sequence of conditional 

maximization steps (CM-steps), and these conditional 

maximizations over the registration parameters cannot be 

carried out independently of other parameters, namely 

covariances of the GMM model [3]. It ensures that the 

algorithm does not become easily stuck in local minima as 

ICP does. 

In this paper, we implement both ICP and ECM 

algorithms and compare their performance in a scenario in 

which dozens of model points have to be matched with 

thousands of observation points. We will evaluate their 

registration accuracies defined by the average of distances 

between model points transformed by the estimated 

transformation parameters and those transformed by the 

ground truth of the transformation. By adding Gaussian 

white noise with the mean centered at each observation point 

and a certain standard deviation, we observe also the 

robustness of both algorithms. 

II. METHODS 

A. ECM for Point Registration 

The ECM algorithm we implemented and compared with 

the ICP algorithm originates from [3]. 

Assume we have 3D observation points {  }      and 3D 

model points *  +     , then the transformed model point 

can be denoted as  (    )       ⃑ with transformation 

parameters    *   ⃑+ where   is a     rotation matrix 

and  ⃑ is a     translation vector [3]. 

The prior probability that an observed point    is assigned 

to a Gaussian cluster with center  (    ) can be expressed 

by     (    ) and the prior probability that    

corresponds to an outlier is written as       (      ) 

[3]. 

Moreover, the conditional likelihood of   , i.e. the 

probability of    given its cluster assignment, is  (      

 )    *     +        *       + that follows a 

Gaussian distribution with mean  (    ) and covariance   . 
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Similarly, the conditional likelihood of    belonging to the 

outlier cluster is a uniform distribution over a 3D volume  : 
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Thus the posterior probabilities of an assignment  (   

 ) conditioned by observations can be derived as: 
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where   is radius of a small sphere centered at a model point 

   and   
 

 
    is the sphere volume with assumption of 

     and    
 

 
       or    
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which is equation (12) of [3]. 

 The expected complete-data log-likelihood conditioned by 

the observed data is given by equation (18) in [3]: 
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with   *         +. 
 The estimation of transformation parameter   from (2) is 

separated from and ahead of the estimation of covariance 

matrices    of GMM, i.e. equation (19) of [3] 
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With the introduced virtual observation points   (    
 ) from equation (22) of [3] and their weights   (     ) 

from equation (23) of [3], (3) can be rewritten as equation 

(26) in [3] 

            ⃑
 

 
∑   ‖        ⃑ ‖

  

  
   .   (4) 

Supposing GMM is an isotropic covariance model 

(     
   ), we can write (4) further as: 
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Referring to [4], both centroids of weighted virtual 

observation points and weighted model points are 

respectively 
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The centroid of weighted transformed model points is 
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Denoting 
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 as  , from        we derive 

        ⃑, 

then we obtain 

 ⃑  (     )  .       (6) 

With (6), the cost function of (5) can be written as: 
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where   
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 According to [4], minimizing the cost function in (7) has 

an equal effect as maximizing ∑ (  
 )    

 

   
. If we define 

  ∑   (  
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 whose Singular Value Decomposition 

(SVD) is       , we get 

     .          (8) 

From (8) and (6), we can estimate the new transformation 

parameters   and  ⃑. 

When    is achieved by minimization, the partial 

derivative of (2) with respect to    is 0, i.e. 
  ( )

   
  .         (9) 
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  ], (9) leads to 

equation (20) in [3]. In case of the isotropic covariance 

model, (9) results in 
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Thus, with new transformation parameters   and  ⃑, as well 

as the new posterior probabilities    , new covariance 

matrices    can be estimated from (10). 

 As a result of (6), (8) and (10), the estimation of the 

transformation and the GMM are separately updated step by 

step, until the expected complete-data log-likelihood  ( ) 

conditioned by observations converges to a minimum. 

  

B. Algorithm of ECM for Point Registration 

Our implementation of the ECM algorithm consists of the 

following steps: 

1) Initialization. 

Initialize rotation matrix with e.g.   [
    
    
   

], 

translation vector with  ⃑   ⃑⃑⃑, and covariance matrices 

with      
  ,         and e.g.   

      (   ), 

assuming the isotropic covariance model is used. 

2) E-step: expectation evaluation. 

(a) Use current  ,  ⃑ and    to evaluate the posterior 

probabilities     from (1), virtual observation points 

  (     ) from equation (22) of [3] and their 

weights   (     ) from equation (23) of [3]. 
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(b) One difference from the ECM algorithm explained 

in [3] is: 

In order to accelerate the algorithm convergence, while 

the algorithm converges to a certain small extent (e.g. 

‖      ‖      ), we utilize the “winner-takes-all” 

scheme to take    directly from the real observation 

point that has the biggest posterior probability with 

respect to a certain model point    than other 

observations, instead of to calculate    virtually from 

all weighted observation points with the equation (22) 

of [3]. 

3) CM-steps: conditional maximization. 

(a) Another difference from the ECM algorithm in [3] is 

that we update the transformation parameters   and  ⃑ 

not with Semi-Definite Positive (SDP) relaxation but 

from (8) and (6) respectively. 

(b) As mentioned above, the covariance matrices    is 

estimated separately from   and  ⃑. At this step, we can 

estimate them from (10) with new values of  ,  ⃑ and 

posterior possibilities    . 

4) Check convergence. 

If ‖      ‖ is less than a certain convergence 

criterion (e.g.1e-5), go to the next step. Otherwise, the 

algorithm goes back to step 2. 

5) Classification. 

For each observation point, choose the model point with 

the maximal posterior probability as its matched point. 

 

C. Standard ICP 

According to [2], the standard ICP algorithm we 

implemented comprises procedures as follows: 

1) Initialization. 

Initialize the rotation matrix   and translation vector  ⃑ 

with the same initial values as those in the ECM 

algorithm we implemented above.  

2) Closest point searching. 

Transform the original model points   (     ) 

with current   and  ⃑. For each transformed model point, 

calculate the closest point among all observations. 

3) Estimation. 

Take the original model points   (     ) and their 

found observation correspondences as paired points to 

estimate new   and  ⃑ via Arun’s solution in [4]. 

4) Check convergence. 

If ‖      ‖ is less than the same convergence 

criterion as that of our ECM implementation, the 

algorithm ends. Otherwise, it goes back to step 2. 

III. EXPERIMENT AND RESULTS 

A. Experiment Design 

The scenario we set for our experiments is that dozens of 

model points must be registered with significantly more 

observations e.g. thousands of observed points. The 

observation points in our experiments are from a pelvis 

model that is segmented from the CT dataset of a dry 

cadaver pelvis. As Fig. 1 shows, the 24994 3D points on this 

pelvis model will be considered as observed points for our 

experiments. 

Model points used in each trial are 50 3D points that are 

randomly chosen from 24994 observed points and then 

transformed by a certain 3D transformation. 

The ground truth of the 3D transformation with which the 

transformed model points match to their original positions 

on the pelvis model is known to be 

  [

              
             

              
               

            
  

             
       

], 

which corresponds to Euler angles (       ,        , 
        ) and translation (         (  ),    

       (  ),         (  )). 

 
Fig. 1.  The pelvis model containing 24994 3D points that serve as observed 

points for our experiments. 

 

The registration accuracy in each experiment is defined by 

the average of distances between model points transformed 

by the estimated transformation parameters and those 

transformed by the ground truth of the transformation, i.e. 
∑ ‖(      ⃑ ) (     ⃑)‖ 
   

 
, where    and  ⃑  are the estimated 

rotation and translation,   and  ⃑ are the ground truth, 

     is the number of model points, and    denotes a 

model point. 

The definition of a correct registration is that its 

registration accuracy is better than 2mm. 

Our experiments are composed of two groups: trials 

employing the observation points without noise, and trials 

with the observation points corrupted by Gaussian white 

noise. 

The group without noise includes 40 trials for each 

algorithm. All of 80 trials in this group have the same 

ground truth, initialization values, and convergence criterion. 
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For each trial on the ECM algorithm, 50 points randomly 

chosen from 24994 observed points are transformed to serve 

as model points, and these 50 model points are also used by 

one of the 40 trials on the ICP algorithm. The observed 

experiment outputs within this group are the number of 

iterations and correct matches, and the registration accuracy. 

Experimental setups of the group with Gaussian white 

noise are identical to those of the other group, except that the 

observation points are disturbed by Gaussian white noise 

with the mean centered at each observation point and the 

standard deviation   1mm. The experiment outputs 

including the number of correct matches and iterations, the 

registration accuracy, and the noise strength are observed. 

 

B. Results 

The experiment results of the group without noise are 

listed in Table I. 

Although the initialization parameters remain unchanged 

for all 80 trials in this group as stated above, they can be 

considered as the randomly chosen values for each trial, 

since the 50 model points are selected randomly. Initialized 

by different random parameters, the ECM algorithm could 

achieve correct matches in 90% of 40 trials, whereas the 

success ratio of the standard ICP algorithm is less than 40%, 

as the first row (“Correct Match”) of Table I shows. This 

implies that the ICP method is more sensitive to the 

initialization than the ECM method. 

The results shown in the row of “Registration Accuracy” 

indicate that the point registration with ECM provides us 

with more consistent estimations of the transformation 

parameters than that with ICP. The huge variation of the 

registration accuracy from ICP can be explained by the fact 

that the ICP algorithm easily falls into local minima and 

leads to different registration results with different 

initializations. 

In the third row of Table I, we notice that given an 

appropriate initialization, the ICP algorithm can reach as 

high a registration accuracy as the ECM algorithm within the 

situation without noise. 

Furthermore, the last row of Table I demonstrates that the 

efficiency of the ECM method is comparable with that of the 

ICP method in the ideal case. 

Table II gives the experiment results of the group with 

Gaussian white noise (standard deviation   1mm). It 

illustrates that in case of the presence of noise, ICP works 

efficiently but not robustly, whereas ECM is not so efficient 

but quite robust. 

IV. CONCLUSION 

In this paper, we performed the implementation of an 

ECM algorithm and a standard ICP method. Moreover, we 

designed an experiment to register a small number of model 

points with a huge amount of observation points on a pelvis 

model. By conducting experiments in scenarios without 

noise and with Gaussian white noise, we evaluated and 

compared the performance of both algorithms for point 

registration. 

TABLE I 
EXPERIMENT RESULTS OF POINT REGISTRATION WITH ECM AND ICP 

(FIRST GROUP: WITHOUT NOISE) 

 
ECM Standard ICP 

Correct Match 
  

  
     

  

  
       

Registration 

Accuracy (mm) 

0.36 (Mean) 

0.78 (STD) 

2.88 (Max) 

0.01 (Min) 

56.90 (Mean) 

49.32 (STD) 

154.80 (Max) 

0.01 (Min) 

Registration 

Accuracy (mm) 

(only correct 

matches) 

0.13 (Mean) 
0.38 (STD) 

1.87 (Max) 

0.01 (Min) 

0.28 (Mean) 
0.58 (STD) 

1.77 (Max) 

0.01 (Min) 

Number of 

Iterations 

28.6 (Mean) 

7.0 (STD) 
48.0 (Max) 

19.0 (Min) 

36.0 (Mean) 

15.9 (STD) 
74.0 (Max) 

15.0 (Min) 

 

TABLE II 
EXPERIMENT RESULTS OF POINT REGISTRATION WITH ECM AND ICP 

(SECOND GROUP: WITH GAUSSIAN WHITE NOISE, STANDARD 

DEVIATION   1MM) 

 
ECM Standard ICP 

Correct Match 
  

  
       

 

  
    

Registration 

Accuracy (mm) 

3.19 (Mean) 

2.17 (STD) 
11.01 (Max) 

0.70 (Min) 

76.88 (Mean) 

37.15 (STD) 
125.11 (Max) 

9.19 (Min) 

Registration 

Accuracy (mm) 

(only correct 

matches) 

1.51 (Mean) 

0.44 (STD) 

2.06 (Max) 

0.70 (Min) 

-- (Mean) 

-- (STD) 

-- (Max) 

-- (Min) 

Number of 

Iterations 

53.4 (Mean) 
19.1 (STD) 

100.0 (Max) 

22.0 (Min) 

27.8 (Mean) 
14.2 (STD) 

69.0 (Max) 

12.0 (Min) 

Noise Strength 

(mm) 

X-axis: 0.80 (Mean), 0.60 (STD), 5.05 
(Max), 0.00 (Min) 

 

Y-axis: 0.80 (Mean), 0.60 (STD), 5.22 
(Max), 0.00 (Min) 

 
Z-axis: 0.80 (Mean), 0.60 (STD), 4.64 

(Max), 0.00 (Min) 
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The experiment results show that both algorithms can 

obtain an accurate registration, whereas the ICP method 

requires the appropriate initialization to converge globally. 

With respect to different initializations, the registration 

results from ICP are very inconsistent. On the contrary, 

ECM can produce consistent results, because its CM-steps 

ensure that it does not become easily captured by local 

minima. Our experiments also prove that the ECM algorithm 

is not as sensitive to initial parameter values as the ICP 

algorithm. We also observed in experiments that ECM is 

less efficient but more robust than ICP in the case with 

noise. 

In the future, we would like to investigate the extension of 

the ICP method and the acceleration of the ECM algorithm 

with e.g. the fast Gauss transform. Based on this work, a 

further comparison in terms of the computational complexity 

between ECM and ICP will be covered. Furthermore, both 

algorithms will be verified and compared in different 

experiments e.g. in scenarios with outliers. In addition, we 

are also interested to extend the ECM method to different 

applications including the non-rigid case. 
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