
Scalable Customization of Atrial Fibrillation Detection in Cardiac

Monitoring Devices: Increasing Detection Accuracy through

Personalized Monitoring in Large Patient Populations

Kuk Jin Jang, Guha Balakrishnan, Zeeshan Syed, Naveen Verma

Abstract— To make it viable for remote monitoring to scale
to large patient populations, the accuracy of detectors used to
identify patient states of interests must improve. Patient-specific
detectors hold the promise of higher accuracy than generic
detectors, but the need to train these detectors individually for
each patient using expert labeled data limits their scalability.
We explore a solution to this challenge in the context of atrial
fibrillation (AF) detection. Using patient recordings from the
MIT-BIH AF database, we demonstrate the importance of
patient specificity and present a scalable method of constructing
a personalized detector based on active learning. Using a
generic detector having a sensitivity of 76% and a specificity
of 57% as its seed, our active learning approach constructs
a detector with a sensitivity of 90% and specificity of 85%.
This performance approaches that of a patient-specific detector,
which has a sensitivity of 94% and specificity of 85%. By
selectively choosing examples for training, the active learning
approach reduces the amount of expert labeling needed by
almost eight fold (compared to the patient-specific detector)
while achieving accuracy within 99%.

I. INTRODUCTION

IN recent years, the growing demand for continuous

care services has placed an increased focus on making

healthcare scalable and cost-effective [1]. Remote monitor-

ing systems are of particular interest, allowing healthcare

professionals to network and share resources at a distance to

efficiently administer care. Preliminary realizations of these

systems [2] have begun to demonstrate the viability with

which electronic devices and networking technologies can

facilitate such methods. However, for these systems to have

substantial impact, they must not only address issues of

technological scalability, but also issues limiting scalability

of clinical responsiveness. This implies the need for robust

performance to minimize alarm fatigue, which today is a

bottleneck even in hospital monitoring; the ratio of false

alarms in the ICU to true critical alarms, for instance, can be

as high as 100 to 1 with the most current detectors [3]. These

inaccuracies compromise patient care (due to unheeded or

turned-off alarms [4]), and the problem will be exacerbated

in the out-patient scenario where the intent is for monitoring

to scale to much larger populations.
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Recently, data-driven approaches for monitoring patients

have demonstrated the ability to improve the accuracy of

clinical detection systems. These approaches exploit the

increasing large-scale availability of patient data to construct

high-order models of physiological signals, thereby achiev-

ing high detection sensitivity and specificity. Through the use

of machine-learning techniques, the ability to construct and

apply such models has become increasingly efficient even

when the datasets are large and the models must capture

complex correlations. It is thus possible to construct models

on even a patient-by-patient basis, which can substantially

improve the specificity of detection tasks [5]. The critical

challenge, however, is that with existing machine-learning

approaches, this requires large volumes of patient-specific

training data that must first be labeled by an expert. This

motivates a need to make the customization process more

scalable.

In this paper, we demonstrate a scalable approach for

constructing a patient-specific atrial fibrillation (AF) detector.

Our approach is based on active learning, a machine learning

technique aimed at reducing the costs of training supervised

learners. Active learning has been explored in a wide range of

applications and has been applied in earlier medical work,

most notably to epileptic seizure detection [6]. Our focus

on AF is motivated by multiple considerations. First, AF is

the most common form of atrial sustained arrhythmia and

accounts for more hospitalizations than any other cardiac

arrhythmia [7]. Second, while AF may not be lethal itself,

it is associated with other cardiac conditions and increases

the risk of death from cardiac disease [8]. Third, continuous,

accurate, and long-term detection of AF is needed in order

to correctly diagnose and treat AF [9]. These factors make

it one of the key states of interest for remote-monitoring

applications targeting pre-emptive response.

In this paper we:

• Develop an active learning framework for patient-

specific AF detection.

• Evaluate the benefits of patient specificity and our active

learning algorithm on real electrocardiogram (ECG)

data containing atrial fibrillations.

II. METHODS

A. AF Detection Architecture

We used an AF detection architecture based on a two-step

process where features are first extracted from electrocar-

diographic (ECG) data and then classified using a support
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vector machine (SVM). The feature extraction process is

based on the approach described in [10] (see Fig. 1). Each

patient’s ECG data is first segmented into 2 minute intervals.

The R-peaks of the ECG waveform are then identified, and

the R-peak to R-peak (RR) intervals over this period are

calculated. Subsequently, the first difference of the RR time-

series is computed corresponding to the new time-series δRR

where δRR(i) = RR(i)−RR(i−1). Characteristics of AF are

expressed by the statistics exhibited by successive δRR values.

In particular, a 2-D histogram is derived using successive

values to form a coordinate pair, i.e., (δRR(i),δRR(i − 1)),
and the histogram bins are divided into the groups arranged

as shown in Fig.1. Based on the counts in groups of bins, six

features are calculated (as detailed in [10]) and concatenated

to form a feature vector.

Each training feature vector is assigned a label of -1 or

1 based on expert annotations of when AF occurs. These

vectors are then used to train an SVM classifier using a

Gaussian radial basis function (RBF) kernel. The RBF kernel

is used for high flexibility in modeling the data distributions

in the feature space. The model can then be used for real-

time detection of AF based on test feature vectors.
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Fig. 1. Feature extraction using the process described in [10]

Using this architecture, we develop three types of AF

detectors differing in the manner in which they acquire

training data: a generic detector (DG) is trained on historical

records (Fig. 2a); an ideal patient-specific detector (DPS)

is trained on a given patient’s own data (Fig. 2b); and an

active learning detector (DA) is trained using an informative

subset of the given patient’s data. Intuitively, DG incurs

the lowest possible annotation cost since no new labeling

is required, but it may also be fairly inaccurate since it

is not capable of acutely modeling each patient’s unique

physiology. Conversely, we expect DPS to exhibit the best

sensitivity and specificity, but also to require extensive expert

labeling. DA, as described in the following section, attempts

to achieve DPS’s performance with far less dependence on

human labeling.

(a)

Historical

Records

Patient 

Testing Data

Generic Detector

Training

Detector

Output

Labeled

a priori Patient 

Training Data

Patient-

by-patient

Labeling

(b)

Patient 

Specific Data

Ideal Detector

Training

Detector

Output
Patient 

Testing Data

Fig. 2. Block diagram of (a) generic detector (DG) and (b) ideal, patient-
specific detector (DPS).

B. Active Learning Detector (DA)

Active learning involves the closed-loop phenomenon of a

learner selecting actions or making queries that influence the

choice of data to be added to its training set. An active learner

attempts to select data points that are the most informative

to train on, and these points are then labeled by an ‘oracle’

(e.g., a human expert) with some cost associated with each

query. These labeled instances are added to the training set of

the classifier. This cycle repeats until a stopping criterion is

met (see Fig. 3). The promise of active learning is that when

the instances are selected properly, the data and computation

costs can be reduced dramatically [11],[12].
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Fig. 3. Diagram of active learning process

The active learning process can be separated into three

distinct steps: initialization, selection, and termination. Dur-

ing initialization, the active learner is seeded with an initial

detector. In this work, the initial detector is the generic

detector DG. This initial detector is then subsequently mod-

ified through the selection phase as unlabeled data instances

(i.e., feature vectors) acquired from the patient are labeled

and added to the training set. To reduce the number of

training computation cycles, we adopted a process in which

data instances are added in batches of 100. While several

heuristics have been proposed in the literature to select

these batches intelligently, we use a simple approach that

selects instances nearest to the SVM decision hyperplane

[13]. More formally, for a given data instance xi /∈ Iτ , where

Iτ corresponds to the labeled training set prior to the selection

of the τ-th batch, new data instances are chosen to minimize:
∣

∣

∣

∣

∣

∑
xτ∈Iτ

yτ ατ K(xτ ,xi)

∣

∣

∣

∣

∣

(1)

where K(xτ ,xi) corresponds to the RBF SVM kernel, and ατ

denotes the Lagrangian multiplier for xi.

In general, as training instances are added through selec-

tion, more support vectors are produced (i.e., the SVM model

complexity increases). Fig. 4 shows a typical scenario of how

the number of support vectors evolves in this application

during the selection process; a distinct ’knee’ occurs in

the curve, after which the rate of support vectors produced

decreases. We consider halting the process at this knee

since learning then begins to noticeably stagnate. In order

to approximate this point, we developed a novel termination

criterion based on the rate of change of the number of support

vectors. Formally, we terminate the learner at batch τ when:

(θ (τ − 10)−θ (τ))/10

(θ (τ − 20)−θ (τ))/20
> β (2)
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where θ (τ) is the number of support vectors in the trained

model at batch τ and β is a threshold. A value of β = 2 is

used. Intuitively, this criterion terminates the learner when

the slope of the θ curve starts rapidly decreasing.
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Fig. 4. Example of active learning process (Results of Patient 20). A batch
corresponds to 100 selected feature vectors.

III. TESTING METHODOLOGY AND RESULTS

A. Experimental Setup

We used the MIT-BIH AF database [14] to evaluate

our work. This dataset consists of ECG data (sampled at

250 Hz with 12-bit resolution) for 21 patients (10 hours

of data per patient). When training DG, we used 2-fold

cross-validation for training and evaluation. This involved

randomly dividing the patients in the MIT-BIH AF database

into two sets and alternately training DG on records from

one set and then testing the detector on records from the

other set. We set the SVM parameter γ = 20 and used equal

class-specific penalties. When evaluating DPS and DA, 2-

fold cross-validation was performed on each patient’s own

data record. For DG and DPS, optimal SVM parameters were

chosen using 5-fold cross-validation on the training set. This

option was not feasible for DA since no labels are available

at the onset of the active learning process; we thus used

the same SVM parameters as those for DG. Finally, we

also developed a detector (DR) that was initialized with the

generic model and then trained by selecting patient-specific

data batches randomly. This was used as a control in our

experiments to evaluate the performance of DA. We used the

LIBSVM [15] software package for our work.

In order to evaluate the performance of the detectors,

the following metrics were used: sensitivity (Sn), specificity

(Sp), and overall accuracy (OA). Sensitivity was defined

as Sn = T P/(TP + FN), specificity was defined as Sp =
T N/(TN +FP), and overall accuracy was defined as OA =
(T P+TN)/Total (where TP is the true positive count, FP

is the false positive count, TN is the true negative count, FN

is the false negative count, and Total is the sum of these).

B. Results

Table I presents the performances of the three detectors

and Fig. 5 compares their overall accuracies. DG achieved a

mean performance of 64.7%, 76.0%, and 57.4% for OA, Sn,

and Sp. As expected, DPS achieved much better performance,

with mean values of 92.0%, 94.4%, and 84.6%. For some pa-

tients (e.g., patients 5 and 6), DPS exhibited a slight decrease

TABLE I

PERFORMANCE SUMMARY OF AF DETECTORS

Generic (DG) Patient-specific (DPS) Active Learning (DA)
Patient

OA(%)a Sn(%) Sp(%) OA(%) Sn(%) Sp(%) OA(%) Sn(%) Sp(%)

1 87.51 94.25 75.26 99.86 99.79 99.99 99.85 99.78 99.99

2 61.82 100.0 61.39 99.99 100.0 99.99 99.90 100.0 99.90

3 85.90 100.0 85.72 99.97 98.00 99.99 99.96 97.60 99.99

4 47.14 94.41 43.53 99.90 99.41 99.94 99.94 99.87 99.94

5 39.48 93.33 16.82 80.83 78.66 81.74 82.24 40.44 99.82

6 68.38 99.86 0.70 82.30 93.63 60.13 83.04 93.14 61.34

7 58.39 75.85 17.33 90.59 95.33 79.43 90.32 95.44 78.28

8 71.79 90.55 29.51 93.60 99.85 79.50 93.73 99.72 80.23

9 73.85 69.07 76.91 84.83 83.20 85.81 88.43 71.00 99.62

10 70.85 74.39 69.82 83.88 90.60 81.93 87.98 63.00 95.23

11 91.57 90.21 95.17 99.15 99.34 98.66 99.49 99.63 99.10

12 33.50 06.85 95.98 84.49 82.83 88.38 84.04 88.97 72.49

13 86.35 83.77 94.04 97.91 97.70 98.52 99.02 99.05 98.93

14 36.90 07.71 87.49 87.48 97.65 69.85 87.17 97.03 70.09

15 88.21 97.19 16.46 93.19 99.41 43.48 93.08 99.37 42.83

16 31.95 11.68 86.94 88.41 90.54 82.65 86.60 95.19 63.28

17 59.33 76.95 23.50 79.63 93.19 52.08 79.55 92.57 53.09

18 89.62 91.87 81.63 97.42 97.03 98.79 97.55 96.95 99.68

19 79.82 97.20 73.74 98.91 99.58 98.68 99.34 99.67 99.22

20 48.42 50.28 38.97 95.92 98.20 84.30 94.26 98.49 72.69

21 47.59 91.37 34.86 92.11 87.92 93.32 90.84 69.99 96.91

Mean 64.68 76.04 57.42 91.96 94.38 84.63 92.21 90.33 84.88

Std. 20.18 29.65 60.70 7.08 6.44 16.53 6.81 15.79 18.45

a OA: Overall Accuracy, Sn: Sensitivity, Sp: Specificity

in sensitivity, though this reduction was minimal compared

to the improvement in specificity, amounting to considerable

improvement in OA. DA had a mean performance of 92.2%,

90.3%, and 84.9%, which was comparable to DPS.

Fig. 6 shows the progression in accuracy over 21 patients

as data batches are added for training (the curves are normal-

ized to the final accuracy achieved by using the entire patient

training dataset). As shown, convergence is achieved with

very few batches; the termination criterion is met after adding

approximately 20% of the patient-specific data. In fact, the

detector achieves 99% of its final OA value with only 13%

of the data, suggesting that a more aggressive termination

criterion may be chosen. Table II shows the effectiveness of

the hyperplane-distance selection criterion by comparing the

amount of data required by both DA and DR to achieve 99%

of DPS accuracy. On average, DA required less than half the

data compared to DR. Fig. 7 shows how the accuracy of DA

and DR progresses for two representative cases (Patients 2

and 14), illustrating the rapid convergence achieved by DA.
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Fig. 6. Progression in accuracy (over 21 patients) for active-learning trained
detector. On average, the termination criterion is met with 20% of the data
instances.
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TABLE II

NUMBER OF DATA POINTS FOR 99% OF DPS ACCURACY

Active (DA) Random (DR) Active (DA) Random (DR)
Patient Patient

Amount (%)a Amount (%) Amount (%) Amount (%)

1 200 1 700 3 12 4900 27 10400 57

2 900 4 4900 22 13 1300 5 6300 25

3 200 1 400 2 14 3400 15 15200 67

4 700 3 3100 14 15 800 3 7800 28

5 9200 30 5700 18 16 4500 26 13100 75

6 9000 30 21800 72 17 5200 26 12700 65

7 4700 26 10200 56 18 700 2 7800 28

8 700 3 3100 14 19 500 2 2000 7

9 2100 9 1400 6 20 3800 14 13400 49

10 3500 18 4700 24 21 4900 16 16600 56

11 400 1 1900 7 Mean 2933.3 13 7771.4 33

a Percent of data points used out of total training instances for each patient.

IV. DISCUSSION & CONCLUSION

Our results show that patient specificity improves AF-

detection, a finding consistent with outcomes from studies

in other clinical domains. In particular, our generic detector

exhibited poor specificity. This characteristic is common

to many detection systems in use today that are trained

on a population-level and thus suffer from an inability to

precisely differentiate between true events and artifacts due

to their need to detect events across a broad range of

individuals. Despite the improved performance provided by

patient specificity, however, the excessive annotation costs

associated with training a detector for each individual has

led to generic systems still being widely employed.

To address this issue, we developed a novel architecture

based on active learning that may make patient-specific AF

detection more scalable. Our SVM-based detector makes use

of population-level prior knowledge for an initial model,

and refines this knowledge by selectively interacting with

human experts to query examples from a new patient until a

termination criterion is met. Our novel criterion assesses the

rate at which support vectors are being added to the detector’s

model and terminates the process when this rate begins to

stagnate. Through this approach, our detector achieved very

similar accuracy to a patient-specific detector while requiring

80% fewer examples.

Our results are promising, but it is also useful to test our

system on other annotated datasets as well as real clinical

settings. Such studies can also help refine the initialization,

batch selection, and termination heuristics used in this work.
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