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Abstract— Advancement in wireless health sensor systems
has triggered rapidly expanding research in continuous activity
monitoring for chronic disease management or promotion and
assessment of physical rehabilitation. Wireless motion sensing
is increasingly important in treatments where remote collection
of sensor measurements can provide an in-field objective evalu-
ation of physical activity patterns. The well-known challenge of
limited operating lifetime of energy-constrained wireless health
sensor systems continues to present a primary limitation for
these applications. This paper introduces CARER, a software
system that supports a novel algorithm that exploits knowledge
of context and dynamically schedules sensor measurement
episodes within an energy consumption budget while ensuring
classification accuracy. The sensor selection algorithm in the
CARER system is based on Partially Observable Markov
Decision Process (POMDP). The parameters for the POMDP
algorithm can be obtained through standard maximum likeli-
hood estimation. Sensor data are also collected from multiple
locations of the subjects body, providing estimation of an
individual’s daily activity patterns.

I. INTRODUCTION AND MOTIVATION

Continuous activity monitoring is becoming important for

managing chronic disease and enabling physical rehabili-

tation [1]. Wireless health sensor systems play a critical

role by providing objective measures of individuals’ physical

conditioning and functional capabilities. For example, recent

research effort on activity monitoring with chronic obstruc-

tive pulmonary disease (COPD) focuses on methodologies

that yield an accurate pattern of daily activity over time [2].

Similar research efforts are directed to monitoring individuals

in neurological rehabilitation [3].

A long standing challenge for broad deployment of wire-

less health sensor systems is the extension of system operat-

ing lifetime under energy constraints. Performance of activity

classification with sensor systems requires that wearable

sensors provide continuous activation to enable knowledge

of subject states. Advances appear in the energy-efficiency of

microelectronic components including sensing, computation,

and communication devices. However, these devices are now

required in greater number on each sensor system with

constantly advancing requirements in extending lifetime. The

energy cost of sensor system operation is often dominant,

in particular with the requirements for multi-modal sensor

systems.
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Context detection methods can be introduced to reduce

energy consumption in sensor systems through the intro-

duction of sensor activation scheduling compliant to context

state [4], [5]. This approach has been based on empirical

observations that activity states are largely repetitive and may

display long periods when states are persistent. Specifically,

by recognizing that successive activities tend to remain

the same temporally, a measurement system may exploit

episodic measurements to reduce unnecessary sensing and

communication costs [6].

This paper introduces CARER (Continuous Activity

Recognition with Embedded Reasoning), a software sensing

support system that supports dynamic sensor scheduling

algorithms by exploiting knowledge of contexts. CARER

employs an architecture in which a mobile device acquires

data from multiple wireless wearable sensors. The primary

innovation of CARER is a new sensor operation scheduling

algorithm, based on a Partially Observable Markov Decision

Process (POMDP). This provides a direct method for reduc-

ing energy demand while ensuring classification accuracy.

The algorithm stochastically determines if a new sensor

measurement is necessary to estimate the activity in the

next episode, and adjusts sensor usage accordingly. It is

important to note that the CARER system makes real-time

dynamic decisions as to whether to obtain additional sensor

measurements for state classification. Such an approach

allows real-time decision-making and intervention during the

course of activity monitoring.

In this paper, the specific example of wearable sensors

integrating Bluetooth technology are equipped with triaxial

accelerometers. The mobile device supports the CARER

algorithm and controls the acquisition of sensor data. In

support of other applications, the CARER system includes

user interfaces for development support. In particular, the

graphical user interface of the CARER system is capable of

displaying real-time sensor data, state classification output,

and the overall system energy consumptions of the Bluetooth

sensors.

II. SYSTEM ARCHITECTURE

CARER adopts the tiered architecture proposed in MEDIC

[7]. The first tier consists of wearable sensors that can

be placed on an individual for physical and physiological

monitoring of biomedical signals. The second tier comprises

a mobile device (e.g., smartphone) that is responsible for:

(a) sensor data aggregation, (b) local data preprocessing,

(c) intermediate data storage, (d) remote sensor control, and

(e) relaying sensor data and local processing outputs to the

remote server.
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(a) System Architecture (b) Sensing Methodology

Fig. 1: CARER System

A. Hardware System

As shown in Fig. 1a, the system consists of MicroLEAP

wearable sensors ([8]) and a mobile device. The mobile

device is responsible for establishing Bluetooth connections

to gather sensor data and controlling the sensors. A system

energy management unit on MicroLEAP is available for

tracking total and average system energy consumption. An

ASCII-based command protocol is implemented on Mi-

croLEAP to facilitate serial data transfer and remote sensor

control.

B. Software Architecture

1) Bluetooth Communication: Communication with Blue-

tooth sensors are performed via the RFCOMM interface in

the underlying Bluez protocol stack [9]. Bluetooth sensors

can be remotely controlled through the use of a pre-defined

protocol. Each Bluetooth sensor occupies exactly one in-

stance (thread) of the RFCOMM.

2) Bluetooth Sensor Management Unit: Multiple RF-

COMM threads are instantiated by the Bluetooth Sensor

Management Unit, which is responsible for creating and

managing all Bluetooth connections between the mobile

device and the sensors. Sensor data are identified with a

unique sensor ID, and data are sent to upper-layer services

and activities via messages. The unit is also responsible for

monitoring the overall energy consumption of the Bluetooth

sensors. MicroLEAP supports real-time system energy ac-

counting; the traces of system energy consumption are sent

periodically to the unit.

III. METHODOLOGY

The novel feature of the CARER system is its dynamic

sensing algorithm based on a POMDP, which is a discrete-

time, discrete-state control process that determines when to

activate sensors for state classification [10]. The process

consists of a hidden Markov model (HMM) that models the

activity transitions, and a control policy based on finite-state

machine (FSM) that controls the availability of Bluetooth

sensors (see Fig. 1b). In a POMDP, the State Space, |S|,
contains the set of the activities of interest. The Observation

Space, |Ω|, contains the set of observation symbols extracted

from sensor measurements. The Action Space, |A|, consists

of the set of all available sensor controls. (e.g., activate

and de-activate Bluetooth sensors). The state-transition prob-

ability, P (st+1|st), and observation probability, P (ot|st),
have the same definitions as those in a standard HMM.

For example, an HMM can model a process that includes

sitting and walking. Accelerometers can be used as sensors,

and features extracted from sensor measurements can be

discretized.

The objective is to accurately detect activity patterns in

different parts of the body given some resource constraint.

At each discrete time step (or sensing epoch) t, sensor

measurements are made if sensors are available (i.e., at−1 =
Activate). At the end of the epoch, an observation symbol

ot is generated, and it is used to compute the hidden state

st. Simultaneously, the FSM maintains an internal state nt
and generates a new sensor decision at that determines

whether sensors are to be activated next. POMDP estimates

the posterior state probabilities based on the corresponding

observation symbol.

A. Objective and Constraints

Both objective and constraint functions are specified by

the long-term average cost for a given control policy π:

Cπ = lim
T→∞

1

T
· Eπ

[ T
∑

t=0

cπ(st)

]

(1)

Equation (1) takes into account the long-term effect of π,

and it is independent of the initial state st=0 [10].

The objective function is defined as the misclassification

cost of a one-step posterior estimation: c(st, at) = 1 −
maxst+1,ot+1 P (st+1|ot+1, st, at). The cost function is de-

fined as the (normalized) energy consumption in one epoch:

e(st, at) ∈ [0, 1]. The energy consumption can be measured

by using the energy accounting capability on MicroLEAP or

through offline measurements. The two functions are used to

solve for the corresponding policy π in the POMDP problem;

the objective (misclassification cost) and constraints (sensor

energy) represent the performance-energy tradeoff.

B. Feature Extraction

In this paper, physical activity is defined as any bod-

ily movement produced by skeletal muscles that results

in energy expenditure beyond resting energy expenditure

[11]. The Vector Magnitude Unit (VMU) is a commonly

used feature for estimating energy expenditure in many
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accelerometry-based systems [2], [12]. Denote f (i)(t) as the

VMU at time t; it corresponds to the magnitude of the

applied force/acceleration measured from the i-th accelerom-

eter: f(t) =
√

x2(t) + y2(t) + z2(t).

Denote the feature vector f = (f (1), ..., f (N)), where

N is the number of accelerometers. The joint likelihood,

P (f |s) = P (f (1), ..., f (N)|s) is computed via supervised

training: For each given state s ∈ S, f (i) is discretized

into two bins, and the boundaries for the discretization are

determined in such a way that for each s ∈ S and some f
′,

P (f ′|s = j) = 1.0 and P (f ′|s 6= j) = 0.0. In practice,

the thresholds for the discretization are often determined

experimentally by domain experts through specific training

exercises [13]. Consequently, for each S = j ∈ S and f
′, f ′

is assigned a numerical observation symbol O = i ∈ Ω:

P (O = i|S = j) =

{

1.0 if i = j

0.0 otherwise
(2)

In the feature extraction step, P (ot|st) takes on either zero

or one for a given st ∈ S. This implies full observability

of the underlying state. Consequently, the state-transition

probability, P (st+1|st), can be obtained via maximum like-

lihood estimation using the training data. The sensing epoch

is defined to be four seconds long at a sampling rate of 100

Hz (400 samples/epoch). One feature vector f is extracted in

each epoch.

C. Classification

The posterior state probabilities are based on the Bayesian

belief update equations [10]:

bt+1(st+1) = bt+1(st+1|ot+1,bt, at)

=
P (ot+1|st+1, at) ·

∑

s P (st+1|st) · bt(st)

P (ot+1|bt, at)
(3)

where bt =
(

bt(0), ..., bt(|S|− 1)
)

is a column vector repre-

senting the state probabilities at time t, and P (ot+1|bt, at) =
∑

s′ P (ot+1|s
′, at) ·

∑

s P (s
′|s) · bt(s) is the conditional ev-

idence based upon the previous Bayesian update. Computing

bt+1 is an iterative process that depends only on bt (similar

to the forward algorithm in HMM). The state classification

output is defined as ŝt+1 = argmaxs′bt+1(s
′).

D. Control Policy

The FSM provides the means for controlling sensors. An

FSM is represented by π = {N, η, ψ}, where N is the set of

nodes n ∈ N in the FSM, η = P (nt+1|nt, at, ot+1), and ψ =
P (at|nt). η is responsible for maintaining the internal state

information regarding the control policy, while ψ determines

the relative frequency of different sensor controls a ∈ A. The

control policy is formulated as a constrained POMDP ([10],

[14]), where the constraint is the average energy consumption

per epoch. Equation (1) is used to specify these constraints.

Algorithm 1 Determining Sleep Time

1: INPUT: Nt=0 = nt=0 , At=0 = at=0, b0, t = 0;
2: while (t < ∞) do

3: if at == Activate then

4: Acquire Sensor Data

5: Extract Symbol : ot
6: Estimate and Classify: bt+1

7: nt+1 ∼ P (Nt+1|nt, at, ot+1)
8: at+1 ∼ P (At+1|nt+1)
9: ++t

10: else

11: Tsleep = 0
12: repeat

13: ++Tsleep

14: Extract Symbol: ot+1 ∼ U({0, 1, ..., |Ω| − 1})
15: Estimate and Classify: bt+1

16: nt+1 ∼ P (Nt+1|nt, at, ot+1)
17: at+1 ∼ P (At+1|nt+1)
18: ++t

19: until at == active
20: Sleep for Tsleep epochs

21: end if

22: end while

1) Dynamic Sensor Control Manager: One critical inno-

vation in CARER is the development of the autonomous sen-

sor control manager based on the dynamic sensing algorithm

mentioned. The parameters of the policy π are implemented

in a lookup table, with each value lies between zero and one

(the probability space). As an example, Algorithm 1 shows

an implementation of power-cycling Bluetooth sensors if

A = {Deactivate, Activate}. Lines 4-8 require one epoch

of execution time. Lines 12-19 are used to determine the

duration of sleep time. Because sensors are not available,

the algorithm draws a random symbol (from the uniform

distribution). Consequently, all probability distributions are

known a priori, and each control evaluation step takes

negligible (constant) amount of execution time relative to

an epoch.

IV. EXPERIMENTAL SETUP

Three MicroLEAPs are worn on the right wrist, waist, and

right ankle to capture the activities of interest. The mobile

device serves as the data aggregator, and continuously logs

all sensor data for both training and testing. Three working

days of training data (24+ hours) were collected from two

subjects. Another working day of sensor data was collected

for testing. The corresponding POMDP model parameters

are as follows:

S = {Static, RightArm,RightLeg,WholeBody}
A = {Deactivate, Activate}
Ω = {0, 1, ..., |S| − 1}
π = {N, ψ, η}

P (st+1|st) =
count(st,st+1)

count(st)

P (ot+1|st+1, at) =

{

P (ot+1|st+1) if at = Activate
1/|Ω| otherwise

V. RESULTS

Fig. 2a and 2b show the predicted classifier accuracy as a

function of the average energy consumption as obtained from

the model. For instance, with both subjects, 40% of energy

reduction can be achieved when maintaining an overall level
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Fig. 2: Classifier Accuracy vs. Average Energy Consumption
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Fig. 3: Policy Comparison

of 95% classification accuracy. The figures also show the

sensitivity of each s ∈ S as a function of average energy

consumption. Sensitivity is defined as the proportion of true

positives that are classified correctly. Note that the proposed

control policy performs more efficiently than traditional

classification methods (e.g., decision-tree, naı̈ve Bayes, etc.),

because these methods assume sensors are available and

active at all times. For instance, a naı̈ve Bayes classifier

would require continuous sensor activation (thus average

energy consumption = 1.0 at all times) for state classification.

The corresponding classification accuracy for naı̈ve Bayes is

thus linearly proportional to the average energy consumption,

because the prior probabilities are assumed to be uniform.

The POMDP approach improves the overall classification

accuracy for a given energy consumption budget by us-

ing the state dependencies as additional information for

classification. Fig. 2c illustrates a segment of the time-

series as obtained by the control policy for different energy

consumption constraints. The plots (from top to bottom)

represent the ground truth, classification with average energy

consumption = 0.6, and classification with average energy

consumption = 0.2 respectively. The classification results

approach the ground truth as the energy consumption budget

increases; sensors are allocated correspondingly to detect

different states.

Fig. 3 shows the relative performance of the FSM-based

Fig. 4: CARER System: Screen Capture

control policy against a completely random sensing policy

(i.e., independent of observations and actions). The random

sensing policy is generated according to the corresponding

average energy consumption constraint. As expected, the

FSM-based control policy consistently performs better than

the random policy for both subjects; it allocates energy

consumption for sensors more efficiently by considering

o ∈ Ω and a ∈ A when determining the next control action.

Fig. 4 shows a sample screen capture from the CARER

control system. It displays the sensor data, battery voltages

and average system current consumption of the wearable

sensors in real time.

VI. CONCLUSION

This paper demonstrates a new algorithm and system

exploiting context state to enable continuous activity mon-

itoring under an energy consumption budget. Specifically,

by modeling the state dependencies, CARER dynamically

selects the best episodes for sensor measurements. This

dynamic management of sensor resources reduces the overall

energy consumption of wireless health sensor systems.

The CARER system leads to significant energy reduction

by recognizing the predictability of activities and exploiting

the POMDP method with an approach that offers a solution

compatible with processing technology available to mobile

and wearable sensor systems. It is important to note that the

CARER system provides a comprehensive profile of subject

activity level; this offers an important future extension of

CARER. Specifically, once a state is classified, other sensors

and algorithms may then be recruited for the next stage of
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state analysis. In such a hierarchical configuration, sensors

can be partitioned into different layers, with each layer

providing different granularities. This will enable future

applications of CARER that provide monitoring of sub-

jects for determination of quality of motion for guidance

of neurological rehabilitation (e.g., [3]) to accurate caloric

energy expenditure for guidance of recovery interventions

and promotion of health and wellness.
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