
  

  

Abstract— Parkinson’s disease (PD) predominantly alters the 

motor performance of the affected individuals. In particular, 

the loss of dopaminergic neurons compromises the speed, the 

automaticity and fluidity of movements. As the disease evolves, 

PD patient’s motion becomes slower and tremoric and the 

response to medication fluctuates along the day. In addition, the 

presence of involuntary movements deteriorates voluntary 

movement in advanced state of the disease. These changes in the 

motion can be detected by studying the variation of the signals 

recorded by accelerometers attached in the limbs and belt of the 

patients. The analysis of the most significant changes in these 

signals make possible to build an individualized motor profile of 

the disease, allowing doctors to personalize the medication 

intakes and consequently improving the response of the patient 

to the treatment. Several works have been done in a laboratory 

and supervised environments providing solid results; this work 

focused on the design of unsupervised method for the 

assessment of gait in PD patients. The development of a reliable 

quantitative tool for long-term monitoring of PD symptoms 

would allow the accurate detection of the clinical status during 

the different PD stages and the evaluation of motor 

complications. Besides, it would be very useful both for routine 

clinical care as well as for novel therapies testing.  

I. INTRODUCTION 

arkinson’s disease is one of the most common 

neurodegenerative disorders. It occurs in about 1% of the 

population over the age of 60 and its prevalence increases 

with age. About 20% of people over the age of 80 have 

Parkinson’s disease with associated gait disturbances. The 

major motor disturbances in PD are bradykinesia (i.e. slowed 

movement), hypokinesia (decreased amount of movements, 

especially automatic movements such as gesture and gait), 

resting tremor, rigidity and postural instability. They are 

largely a result of the loss of dopaminergic innervation of the 

basal ganglia. In addition to multiple other effects, the 

impaired basal ganglia function in PD leads to alterations in 

gait and balance. These motor changes in PD often restrict 

 
This work is partially funded by the European Commission under the 

PERFORM project (7th Framework Programme).  

J. Cancela, M. Pastorino, M.T. Arredondo, M. Pansera, L. Pastor-Sanz, 

are with Life Supporting Technologies, Technical University of Madrid 

(UPM), Madrid 28804 Spain (e-mail: jcancela@lst.tfo.upm.es, 

mpansera@lst.tfo.upm.es, mta@lst.tfo.upm.es, lpastor@lst.tfo.upm.es, 

mpastorino@lst.tfo.upm.es). 

F. Villagra and M. A. Pastor are with Division of Neurosciences, Center 

for Applied Medical Research (CIMA), University of Navarra, Pamplona, 

Spain. (e-mail: fvillagra@unav.es, mapastor@unav.es). 

A P. Gonzalez is with Neurophotonics group, Technical University of 

Madrid (UPM), Madrid 28804 Spain. (e-mail: agonmar@tfo.upm.es). 

functional independence and are a major cause of morbidity 

and mortality among these patients [1-4]. The gait 

disturbances in PD may be divided into two types [5]: 

continuous and episodic [6, 7]. The episodic gait 

disturbances occur occasionally and intermittently and 

appear randomly. They include festination, start hesitation 

and freezing of gait [2, 8, 9]. The continuous changes refer 

to alterations in the walking pattern (temporal and spatial 

kinematic parameters). As the disease progresses, gait 

impairment and falls become increasingly frequent and 

severe and develop into one of the main concerns among PD 

patients and caregivers. Another gait feature in PD patients 

seems to be the inability to generate a consistent and steady 

gait rhythm, resulting in an increase in higher stride-to-stride 

variability [10]. The locomotor control system that regulates 

gait rhythm and timing is impaired in PD’s patients. 

Increased of gait variability can be already detected even in 

the early stages of the disease when patients have not started 

taking anti-parkinsonian medications [10]. On the other 

hand, gait disorders are composed of elements, including 

freezing of gait, gait bradykinesia and postural instability. 

All of them result of the imbalance between midbrain 

structures, basal ganglia and cortical motor output. Due to 

such complexity, gait disorders reflect PD pathological 

mechanisms and are therefore a good target for quantitative 

estimation of the patient clinical status. It is important to 

develop portable devices to continuously monitor gait 

rhythm and other gait parameters for long periods of time 

(i.e. 16 hours) in order to achieve a quantitative estimation of 

motor fluctuations in daily activities and assess the effect of 

medication on different gait parameters. In the present work, 

some methodologies to evaluate quantitatively most relevant 

changes affected by PD are described.  

II. DATASET 

A. System for data collection 

The wearable device used to record the accelerometer 

signals consists of a set of five tri-axial accelerometers used 

to record the accelerations of the movements at each patient 

limb and one accelerometer and gyroscope (on the belt) used 

to record body movement accelerations and angular rate. 

Sensors were placed in every limb and belt to allow the 

system to detect and quantify a wide range of symptoms 

related to Parkinson’s disease patients i.e. tremor, 

bradykinesia, dyskinesias and freezing of gait. However, this 
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work focuses on the continuous gait impairment assessment 

using the belt accelerometer. All sensors transmit data using 

Zigbee protocol to a Personal Computer (PC) that receives 

and stores all recorded signals. The sampling rate used was 

62.5 Hz (16 milliseconds between each sample). The PC is 

equipped with an application for the detection of activities 

performed by the subject (sitting, hand movement and 

walking).  

B. Inclusion and Exclusion Criteria 

Patients fulfilling the following criteria were eligible for 

the study: diagnosed of Parkinson’s disease, aged between 

40-70 years old, ambulatory, capable of complying with 

study requirements, receiving stable dopaminergic treatment, 

experiencing motor fluctuations and being supported by a 

responsible caregiver who can cooperate with patient and 

doctor. The exclusion criteria for this study were suffering 

from dementia, hallucinations or any significant systemic 

disease. 

C. Protocol for data collection 

All patients were asked to move freely and perform their 

daily activities. The recording sessions were scheduled to get 

data from two situations, both ON state (times of the day 

with the symptoms minimized by the medications) and OFF 

state (times of the day with the complete presence of the 

symptoms severity) from the same subject. In each case 

Unified Parkinson’s Disease Rating Scale (UPDRS) 

evaluation was performed by a clinician. 

D. Patients data  

TABLE I shows the number of walking events recorded 

with a specific symptom severity from the 10 patients 

involved in the pilot.  
TABLE I 

DATASET 

UPDRS 0  

 

1 

 

2 3 

 

4 

 Number of walking events (ON/OFF) 

Gait 32/35 18/0 0/7 0/2 0/13 

Bradykinesia 29/9 21/19 0/5 0/24 0/0 

Rigidity Left Leg 19/12 31/18 0/7 0/7 0/13 

Rigidity Right Leg 20/18 25/17 5/7 0/2 0/13 

Rigidity Left Wrist 19/8 31/29 0/0 0/7 0/13 

Rigidity Right Wrist 15/10 22/16 13/16 0/2 0/13 

III. HYPOTHESIS 

The observation of the signals recorded by the 

accelerometers in the belt of PD patients and the ones in a 

healthy subject is the first step before starting the 

mathematical approach of the problem. Fig. 1 and Fig. 2 

show the acceleration in the belt sensor for each axis in a 

healthy subject and in a PD’s patient. It is possible to verify 

that x-axis (the axis along the body) and z-axis (the 

perpendicular axis to the thorax) contain most of the 

information related with the walking movement. During 

forward movement and as consequence of each step the z-

axis is suffering acceleration, although the result is the 

subject moving in constant velocity. Also as consequence of 

the forward movement, when the subject impulses himself, 

the x-axis suffers the acceleration in the sagittal plane. Both 

x-axis and z-axis show these accelerations periodic pattern 

related with the normal walking process, while the y-axis 

reflects the movements within the coronal plane. 

Acceleration in this plane appears when the subject turns, 

although there is also a periodic component due to the 

cadence during walking. 

 
Fig. 1 Signals from the trunk sensor in a healthy subject. From top to 

bottom the figure shows the x-axis, y-axis and z-axis. The units of 

horizontal axis are samples and the vertical is directly the value provided by 

the accelerometers. 

 

By contrast, motor signals from PD patients show an 

important distance with the aforementioned pattern. 

Essentially, the presence of bradykinesia and rigidity in PD 

patients lead to a complication in the walking process. 

Patients are unable to move correctly and that modifies the 

healthy walking pattern in a more complex and entropic 

signal. This approach constitutes an important tool for the 

detection of a PD walking pattern. Performing some methods 

of signal processing it is possible obtain a wide range of 

features which can be linked with a healthy pattern gait. In 

addition, the analysis of the movement pattern in healthy 

subjects helps to establish a comparison with the output of 

the PD’s patient recording. 

 
Fig. 2 Signals from the trunk 3-axis accelerometer in a Parkinson’s disease 

patient. From top to bottom the figure shows the x-axis, y-axis and z-axis. 

The units of horizontal axis are samples and the vertical is directly the value 

provided by the accelerometers. 

 

The intuitive conclusions that have been extracted 

previewing the signal can be easily confirmed performing a 
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spectrum analysis. Taking the whole signal of a healthy 

subject and transforming it in the frequency space a signal 

with a significant peak around 1.5Hz - 2Hz is obtained, 

where more than the 90% of the signal power is 

accumulated. This peak represents the step frequency. 

Performing the same proceeding in the PD signal a different 

pattern is obtained. The power spectrum is wider in this case 

and the power in the main peak has moved to different 

frequency bands, generating new peaks with a significant 

power. This degradation of the signal is useful to measure 

the subject abnormal gait. Besides this also implies that the 

capacity of the system for the extraction of features of the 

gait, such as: step frequency or speed will be strongly 

affected by the poor quality of signal and in some cases the 

values obtained from this kind of signal could be far away 

from reality.  

IV. METHODOLOGY 

After the overview of the accelerometers signals from the 

belt of the healthy subject, the PD patient and the qualitative 

approximation, some measures related with the magnitudes 

previously described have been defined. In previous works 

[11], these features were used to compare PD patients and 

healthy subject. In the present work, these measures have 

been compared from the same patient in OFF state and ON 

state. Identifying which of them characterized both states 

more accurately in an unsupervised environment. Next 

paragraphs explain each measure and the procedure carried 

out to implement them. 

A. Step Frequency 

The reduction of the step frequency, number of steps in 

time, and the shortening of stride length are a common 

symptom of PD gait alteration. Therefore studying variations 

in these features along the day will help to detect an 

abnormality of the motion. To measure the step frequency 

algorithms based on the autocorrelation have been 

implemented. Autocorrelation is the cross-correlation of a 

signal with itself. Informally, it represents the similarity 

between observations as a function of the time separation 

between them. It is a mathematical tool for finding repeating 

patterns, such as the presence of a periodic signal which has 

been buried under noise, or identifying the missing 

fundamental frequency in a signal implied by its harmonic 

frequencies. The algorithm calculates the main frequency of 

the signal coming from the sensor attached on the belt. The 

assessment of the main frequency of gait is performed 

calculating the main frequency of “unbiased” auto-

correlation function of the z axis [11, 12]. In order to 

validate this algorithm, some of the patients were asked to 

perform a simple protocol in the hospital. During the 

protocol the patients were wearing the sensors and they were 

video recorded walking in the corridor for a straight distance 

of 10 m. The output of the algorithm was compared with the 

visual examination of the step frequency over 147 periods of 

walking activity (larger than 5 seconds) both in ON and OFF 

state. The average error in the step frequency 

characterization was 1.88 %.  

B. Stride length and speed 

The algorithm used to measure the stride length during 

walking is based on the “double pendulous” model [11-14]. 

The algorithm measures the distance between two “toe off” 

using the signal coming from the belt accelerometer and the 

length of the subject’s leg. The average speed is computed 

multiplying step frequency and step length.  

C.  Entropy 

In a signal processing environment, the entropy is the 

measure of the uncertainty or unpredictability associated to a 

specific variable, or in other words, it is a measure of the 

disorder. In the previous discussion it was concluded that 

signals coming from healthy patients seem to be more 

organized than the ones coming from PD patients. Former 

works [11, 12] have shown how to use the technique 

“Sample Entropy” to calculate the variability and complexity 

of gait in PD disease. Sample entropy quantifies the 

regularity of a time series. It reflects the conditional 

probability that two series of “m” consecutive data points 

which are similar to each other will remain similar when one 

more consecutive point is included [15]. It is considered that 

two data series are similar if the value of a specific measure 

of distance is less than a parameter “r”. In the present work 

the “m” and “r” values chosen were: m = 2 and r = 0.1 

according to our previous test [11, 12].   

V. RESULTS AND DISCUSSION 

During the experiment step frequency, stride length, 

entropy and arm swing were calculated from the 642 walking 

events coming from 10 PD patients. For each patient the 

features extracted from the recordings in OFF and ON state 

were confronted. Fig. 3 shows the average difference (in 

percentage) between the states (within the same patient) of 

all the patients and for all the features.  

 
Fig. 3 Results of the tests. Average variability in percentage between the 

features in the change from OFF state to ON state. 

 

Step frequency, stride length, entropy and arm swing 

present a significant variation between the OFF and ON in 

all the patients. Nevertheless, arm swing and entropy show a 

significant better performance.  The measure of the entropy 

as proposed in previous works [11, 12] also shows an 

important change for the different status of the same patient. 

The entropy variation (lower values in the ON phase) reflects 

the predictability of the signals coming from the ON phase in 
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contrast with ones from the OFF phase. Finally, step 

frequency and stride length show higher values in the ON 

phase as it was expected. Additionally, parallel experiments 

indicated that it is not possible to create a generalization for 

all the patients. There is not a direct correlation between 

variation in the magnitudes and variation in the UPDRS, i.e. 

a specific variation between ON and OFF does not 

necessarily imply a direct variation of UPDRS. That means 

the system needs to be calibrated for each patient, indicating 

how are the specific parameters during the OFF and ON 

states of the patient. Finally Fig. 4 shows an example of 

output events for a specific patient. The first part of the 

figure (11:30:00 – 11:31:20) shows the events generated 

during the ON state. The right side (13:50:00 – 13:51:48) is 

the OFF state. In both states the arm swing and entropy were 

evaluated while the subject was walking. The averages of the 

three values where calculated for ON and OFF and are 

plotted with wider and darker lines. The three features 

followed the expected evolution in the change from ON to 

OFF i.e. decreased of the arm swing and increase of the 

entropy.  

 
Fig. 4 Normalized outputs from arm swing and entropy events in ON state 

and OFF state.  

VI. CONCLUSION 

Apparently using only one accelerometer in the belt does 

not provide accurate and exact output; since the “double 

pendulous” model reflect, an indirect measure quite user 

dependent. The algorithm should be personalized with a 

constant depending on every subject in order to provide an 

accurate output. Moreover, the model uses the leg length as 

input parameter measured with shoes; this value will change 

according to the kind of shoe that the patient is wearing. 

Nevertheless, all these inaccuracies are relevant when 

looking for an exact value of velocity and stride length, but 

we are more interested in studying the same day variation of 

the patient.  These systems can provide us with a detailed 

and accurate status of the impairment. Every patient walks 

following a different pattern, two patients can walk with 

different step frequency not because of the disease itself but 

because they are different. Besides, even the same subject 

walk differently depending on the situations. Working in 

unsupervised environments, parameters related with the 

walking analysis are not very representative and the use of 

alternative measures like entropy or the measure of the arm 

swing are a better choice. These features fluctuate according 

to the status of the patient during the day. Therefore, it is 

possible to develop a continuous monitoring system able to 

identify the different phases of the disease within the day. 

This system could easily alert the professionals when the 

patient faces an OFF phase indicating that a reschedule in the 

medication intake is needed. It is also important have in 

mind that dyskinetic movements will alter the entropy 

patterns. 
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