
  

  

Abstract—This abstract presents new results on the structure 
and function of vestibular part of the inner ear of vertebrates 
with special emphasis on human behavior. First we summarize 
a mathematical analysis of motion of the endolymphatic fluid, 
justifying known approximated formulas for the cupula 
functioning based on a set of anatomical parameters. Some of 
these parameters can be estimated from the bony labyrinth, 
some others cannot be. We present original data issued from 
synchrotron microtomography (S μ CT) of five tetrapod 
species, allowing to compare bony and membranous labyrinths. 
We derive several simple and robust empirical laws connecting 
membranous parameters and bony parameters. Then, using 
published results on human labyrinths (Bradshaw et al. 2009), 
we deduce functional consequences for the human labyrinths. 
For instance we show that, contrarily to current belief, the 
kinematic sensitivity for yaw is larger than for pitch and roll.  
 

I. INTRODUCTION 

 
HE end organs of the inner ear of vertebrates detect the 
movements of the head and the gravitation. Semicircular 

canals (three on each side of the head) register angular 
acceleration and otoliths (two principal on each side in 
mammals, but three in most of the species) register linear 
acceleration and gravitation. The signals the organs send to 
the brain correspond mostly to angular velocity and linear 
acceleration, due to the biomechanics of transduction. One 
problem is to relate the particular structure of the inner ear to 
its detailed function. The basic standard plan for the end 
organs is simple (cf. [1]): on each side of the skull the three 
canals are in three orthogonal planes (one horizontal, two 
vertical at 45° of sagittal and frontal planes), and the otoliths 
maculae stand in two orthogonal planes, one horizontal for 
utricule, one vertical (sagittal) for saccule. However, further 
inspection makes evident a lot of systematic departures from 
this standard bauplan, which depend on inter- and intra-
specific variability. We aim to understand the reasons of 
these departures and variability. In the present study we will 
focus on the semi-circular canals and on the detection of 
rotations, angular acceleration, angular velocity, frequency, 
and sensitivity. 
 
In a recent paper [2] we exposed a method for extracting a 
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functional structure from the anatomy of the bony labyrinth. 
Other similar methods were recently developed, [3], [4]. 
     Any movement of the head generates a motion of the 
endolymphatic fluid contained in the labyrinth, that deforms 
a cupula membrane closing the end of each semi-circular 
canal, then cilia of hair cells on the epithelium of the crista 
ampullaris are deflected, transduction occurs, and afferent 
neurons of cristae integrate the potentials changes by 
modulating their oscillatory activity, and send information in 
the vestibular nuclei and the cerebellum. 
Damiano and Rabbitt [8,9,10], pursuing studies of Curthoys 
and Oman [5,6,7], and Van Burskirk et al. [12,13], 
established equations for the displacement of the cupulae. 
These are linear second order differential equations, their 
second members are integrals of the angular acceleration 
over the canal, and their coefficients depend on the geometry 
and biophysics of the inner labyrinth and of the cupula. The 
problem is to have access to these parameters from bony 
labyrinths. For that purpose, we have to correlate by robust 
statistics the membranous parameters with the bony 
parameters, thus establishing new empirical laws for the 
structure of the labyrinths. This fits with the known methods 
of comparative biology, to reconstruct an organ from a part, 
and to get functional predictions by a physical model. 
 

II. THEORETICAL CANALS FLUID AND CUPULAE MOTION 
 
    If we take only the superior parts of the labyrinth into 
account, the membranous labyrinth, attached inside the bony 
labyrinth, appears as a closed smooth surface V with three 
handles. Each corresponding solid handle in the labyrinth 
volume W is interrupted by a membrane Σ , the cupula 
inside the ampulla volume. By a theorem of Kelvin (cf. 

[14]), there exist three vector field nN (n=1,2,3) harmonics 
and co-harmonics, i.e. irrotational and divergence free, 
which are tangent to the surface V, such that the circulation 

of  nN in the canal n is 2π  and its circulation in the two 

other canals is zero. For any force field F , applied to the 

head, the three integrals of the scalar product nN . F  over 
W represent the fundamental quantities detected by the 
cupula, they give coordinates for head’s angular velocity 

transmitted to the nerve. Thus the harmonic fields nN  are 
the virtual functional canals. Their orthogonal planes 
generate a foliation of W by surfaces orthogonal to V, and 
approximatively parallel to the cupula in the ampulla. 
       In natural conditions the movements of the 
endolymphatic fluid is supposed to be well described by the 
Navier-Stokes equations, coupled with the Kirchoff 
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equations for the membrane (cf. [8]). Let u denotes the fluid 
velocity field, in a coordinate frame which is fixed with 
respect to the head, p the local pressure, depending on the 
point x and the time t, ρ the density, μ  its viscosity (both 
constant), and Ω  the angular velocity of the head, Navier-
Stokes equation says 

 

 
Let w  denotes the transversal displacement of the cupula 
Σ , and cD , cC  denote characteristic constants, Kirchoff 
equation says 

 
We add boundary conditions: on the smooth boundary of V 
the fluid velocity is zero, and along  Σ  we assume 

 
and a 2nd order differential equation for the normal 
derivative to V at the intersection of Σ and V.  
 The system of equations is impossible to solve analytically 
but it is possible to describe an asymptotic solution when the 
transverse area in fine canals becomes small. We consider 
only small fluid velocity, thus neglect the non-linear term in 
Navier-Stokes equation, and assume small displacements of 
the cupula thus use the Kirchoff approximation ([15]). In 
such a case it is legitimate to assume a Poiseuille flow inside 
the slender canals, and then we can compute the integral 

over W of the scalar product of nN   with the equation 1. In 
such a way we recover the formulas of Damiano and Rabbit 
without the assumption that the semi-circular canals are arcs 
of circles (the complete mathematical details will be 
submitted in a mathematical journal). If Q denotes the 
displaced volume along the cupula, γ  its stiffness, and h the 
transverse length of the cupula, 
 

 

 
where A(s) is the area of a surface perpendicular to nN . 
If we consider the transverse displacement θ  this gives with 
the notations of [8,9,10] (with little modifications), we also 
use the values from [11] : 

 
The important point is the separation between a left  member 
controlling dynamical transfer, with small and large time 

constants 1T , 2T , whose inverses 1ω , 2ω  are roots of the 
characteristic equation, the fundamental frequencies, and a 
right member, which is the forcing term, representing the 
geometrical sensing of rotation: 

 
The vector nS  will be approached by an integral over a 
central curve, that represents the skeleton of the canals, and 
replaces the exact virtual current 

 
The angular displacement sensitivity is defined by  

 
Where nA  denotes the area of the cupula. The total length 

nL of the skeleton is a sum of a slender part, a part in the 
common crus, that is shared by the two vertical canals plus a 
part in the large utriculus cavity and in the ampulla cavity: 

 
The ratios of these lengths are geometric characteristics 
easily accessible from the bony labyrinth 

 
We also define mean areas of each segment, and their ratios  

 
A priori these quantities are only detectable from the 
membranous labyrinth.  From the asymptotic formula we get  

 
And with our units, mm and second, we have 
 

 
 
The time constants are given by the following formulas (be 
careful this is not the usual notation) 

 
The fundamental formula for our analysis is 
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III. EMPIRICAL LAWS FROM SYNCHROTRON IMAGING  
 
     The heads of five phylogenetically distant tetrapods (a 
bird, a crocodile, a sea turtle, a newt and a mole rat) were 
scanned at the European Synchrotron Radiation Facility 
(Grenoble, France) at a resolution of 7.46µm. The left bony 
and membranous labyrinths of each specimen were 
reconstructed and used for biomechanical analysis. Since the 
anterior and lateral ampullae of the mole rat were damaged, 
a total of 13 ducts were used. This permitted to compute all 
the above mentioned parameters, and perform a systematic 
statistical analysis (with R system), which allowed us to find 
four laws that significantly correlate bony parameters with 
biomechanically important membranous parameters (David 
et al., in prep). In the present study, we will apply one of 
these laws in order to compute the mechanical sensitivity of 
the human labyrinth.  
     The 3D analysis of the synchrotron data confirmed the 
assertion [5,6] that the membranous canals are attached at 
the external most part of the bony canals but extend this 
observation to all tetrapods. Moreover, this analysis showed 
that the three parts of the membranous duct, SC (slender 
part), CC (common crus) and UA (utricule and ampulla), can 
be recovered from the bony labyrinth (Fig.1). 
    A statistical analysis compared the four parameters easily 
accessible from bony labyrinth: nL , nS , 'λ , "λ with the five 
parameters which are a priori accessible only from the 
membranous labyrinth, na , nA , nh , 'α  and "α .    

The quotient nκ = /n nA a of the area of the cupula 
membrane by the cross-sectional area of slender part is 
considered. It appeared to be correlated to most of the 
measures of the total size of the canal, i.e. nL , nLs , nS ; for 
instance the rank τ  test of Kendall (nonparametric) gave a 
value of 0.77 with p-value of 0.000070, and a linear 
regression of the variable log( nκ ) in log( nLs ) gave an 

2R (explained variance) of 81% and a p-value of 0.00002, 
the log law is a two third law (with log(10)=1): 

 
nκ  is also correlated with nS  (τ = 0.64) and with nL  (τ = 

0.59. We retained nLs  because we wanted to use a rule for 

nκ  in the formula giving nX , and it appeared that nLs  is 

the size variable which is less correlated with nX . Note that 
the size parameters are strongly correlated between them, for 
instance nLs  with nL  gives a τ = 0.82 and nLs  with nS  

gives also a τ = 0.82.    The parameters 'α  and "α can be 
replaced by their means 3 and 4 respectively (David et al., in 
prep). In such a way we obtain a substitute value nX  for 

nX  in function of nS , nκ , nL , nLcc  and nLua . 
 

 
 
Fig. 1.  Three orthogonal views of the labyrinth of the mole 
rat, reconstructed from synchrotron µtomography. The bony 
labyrinth is in blue and the membranous labyrinth is in red. 
The arrows denote the bony landmarks that allow the 
detection of the duct parts. 

 
 

IV. HUMAN KINEMATICAL SENSITIVITY 
 

    By normalizing the vectors nS  by the displacement 

sensitivity nX , we obtain six vectors nX , constituting the 
functional structure of the semicircular canal system (SCFS). 
In the standard model, due to the balance between excitation 
and inhibition, the SCFS is a regular octahedron. This 
implies a uniform sensitivity with respect to the direction of 
angular acceleration. But in reality the SCFS is deformed, 
and relative sensitivity depends on the angular acceleration 
direction.  
    We define the bias of responses (BR) for a given rotation 
axis as the half sum of Euclidian norms of responses of the 
left and right labyrinths. This measures the departure of the 
SCFS from a standard system that is equisensitive for all 
rotations. We define the mapping of sensitivity (MS) as the 
maximal cupular deflection of the system for each rotation.  
Using the published data of Bradshaw et al. 2010, it was 
possible to compute statistics for the BR depending on the 
pitch inclination (feuille 1) and for the MS (figure 2) of 
human’s labyrinths.  
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Fig. 2 Mean SCFS for a human labyrinth (A) and the 
mapping of Sensitivity MS (B). The system is the most 
sensitive for the axes of rotations that tend to the red color.  
     
     We can see in the BR and MS analyses that the system is 
more sensitive to yaw rotation than to pitch and roll. 
We also see interesting variations of the sensitivity when the 
head is inclined in pitch relative to the lateral semicircular 
canals lane (up positive, down negative). In particular, when 
the head is inclined such as the plane of the lateral canals 
make an angle of 20° with the horizontal plane, the 
sensitivity in pitch and roll are equal. On the contrary, when 
the lateral pair is parallel with the horizontal, we look down 
and the yaw sensitivity increase, allowing a better angular 
discrimination for navigation. 
     Finally we show the contributions of each canal to the 
three axis motion, pitch roll and yaw. We can see here that 
in humans the anterior canals can be affiliated with pitch 
detection, the posterior canals with roll detection and the 
lateral canals with yaw detection. 

 
All these results indicate a higher sensitivity of humans 

for yaw than for pitch and roll, which confirms the 
hypothesis made by A. Berthoz [15], of a horizontal fine 
control by a moving platform on the neck. However, a defect 
of sensitivity also indicates a rotation axis where the natural 
angular acceleration and velocity are higher because the 
same cupular displacements are obtained for higher 
velocities and/or accelerations. 
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