
 
 

 

 

  

Abstract—We present a set of formulas for the receptive 
fields of the vestibular neurons that are motivated by Galilean 
invariance. We show that these formulas explain non-trivial 
data in neurophysiology, and suggest new hypothesis to be 
tested in dynamical 3D conditions. Moreover our model offers a 
way for neuronal computing with 3D displacements, which is 
reputed to be hard, underlying the vestibular reflexes. This 
computation is presented in a Bayesian framework. The basis 
of the model is the necessity of living bodies to work invariantly 
in space-time, allied to the necessary discreteness of neuronal 
transmission. 
 

any studies on the vestibular system have insisted on 
the necessity to take in account the 3D+1 aspects of 

the vestibular integration, as well as its essential multi-
sensory functioning., cf. [2], [3]. However the complexity of 
responses in the vestibular centers of the brain and the 
difficulty of 3D natural stimulations make difficult the 
understanding of vestibular neuronal activity. Responses of 
vestibular neurons were first described by Adrian, then by 
Shimazu and Precht, see Wilson and Melvill Jones [1], and 
more recent experiments have considerably augmented our 
knowledge of these activities ([2,3,4,5,6,7]). Epithelia of end 
organs in the inner ear, semi-circular canals cristae and 
otoliths maculae, have overlapping projection in the 
vestibular nuclei and the cerebellum [3], where they generate 
tonic or phasic kinetic activities, able to differentiate  
between active or passive head movements (Cullen-Roy 
[13]), or between movements of head alone, of trunk alone 
or of both together (Marlinski, McCrea [9]). A linear 
formula in the stimuli vectors explains a part of the 
responses in 2D conditions, but the 3D aspects are still 
obscure (cf. [4]). Most neurons in the vestibular nuclei, or 
the vestibular cerebellum (flocculus, uvula, nodulus, 
paraflocculus) and the fastigial nucleus, for instance, are also 
strongly modulated by the visual system (eye position or 
vision), by proprioception, and by many other inputs, from 
the skin and muscles of the limbs and trunk as well as 
viscera [14]. 
   The aim of the present communication is to propose a 
hypothesis for the forms of the possible elementary 
responses of the vestibular neurons, based on Galilean 
invariance, extending the manner that primary cortical visual 
receptive fields are based on Fourier analysis or wavelets. 
This gives a conjectural set of possible receptive fields 
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(RFs). Some of them correspond to known observations, 
putting mathematical order on the data, but other ones offer 
new suggestions to be tested.  

It seems a priori difficult for the vestibular neurons to 
reconstitute a complete Galilean invariance, as physicists 
have discovered it in empty space, because the gravity 
breaks the Galilean symmetry in general. However, it is 
known that the population of vestibular neurons is able to 
separate the gravity from the linear acceleration (Angelaki et 
al. [16]), and that human subjects behave as if they possess 
internal models of the fundamental laws of the Mechanics 
(Merfeld et al. [10], McIntyre et al. [11], Indovina et al. 
[12]). Thus we suggest that the system is able to coherently 
treats gravity plus acceleration, preserving Galilean 
relativity. This is conform with the discovery of Yashukeva 
et al. [5], that the vestibular neurons in the posterior 
cerebellar vermis  are working in inertial frames. 

 
I. THE NOTION OF INVARIANT RECEPTIVE FIELD 

 
Let us follow the information flow from the vestibular end 

organs to the vestibular nuclei (VN) and cerebellum, then to 
the thalamus and to the cortex or cerebellum and back to 
VN. The cupula membrane in the ampulla of semi-circular 
canals reacts to angular accelerations of the head in space, 
but, due to the biophysic of the endolymph and of the 
cupula,  the signals regress to angular velocity. The otoliths 
react to the linear acceleration of the head and to the 
gravitation, then the signal is transmitted to the vestibular 
nerve. This is the right order for Galilean relativity, because 
this implies that semi-circular and otoliths signals together 
define a tangent vector to the linear part of the Galilée group, 
a 6 dimensional velocity. Note that the physiology of the 
cristae afferent neurons permits to restitute in part an angular 
acceleration signal, this is the role of the irregular phasic 
subsystem, but on the side of otoliths, the linear jerk is partly 
transmitted accordingly, again saving relativity.  See [14]. 

In the Nodulus and Uvula (respectively lobules 10 and 9 
of caudal posterior vermis) of monkeys, Jakusheva et al. [5] 
established that the complex spikes (CS) of Purkinje cells 
contain information on the linear acceleration of the head 
and its angular velocity. Most central vestibular neurons are 
modulated by vision and other sensory inputs; we pretend 
that this again is compatible with relativity inside the brain, 
because inertial changes, as translation, or rotation, cannot 
be detected by vestibular end organs only, so the Galilean 
invariance needs other inputs like visual input, to be 
complete. In this respect it is worth mentioning that the 
accessory optic system (MTN, DTN, LTN), where neurons 
respond to large moving visual stimuli, and are involved in 
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eye movements control, in strong interaction with the 
pretectal NOT and the Inferior Olive, is also organized in the  
planes of the semicircular canals.  

We want to explore the consequences of the following 
observations of Helmholtz and Poincaré, that the access of 
living entities to space and time needs movements and the 
notion of invariance. The theory of groups in Mathematics 
was invented to formalize invariance, symmetry and 
ambiguity. The theory of Relativity in Physics is the 
ancestor of this program. On another side, space and time are 
not given first in usual terms of position and date, but they 
are accessible only through frequency and impulsion data. 

Invariance is coded in a certain group, which is a set of 
transformations, acting on a space, and which is stable by 
compositions and inversions. In our situation the Galilée 
group of the relativity of motion in classical Physics is 
dominant (but not exclusive). The theory of group invariants 
has a modern formulation, named harmonic analysis, where 
we consider all the matrix (a priori infinite) representations 
of the group that are unitary (for compatibility with 
probability) and irreducible (for elementary decomposition). 
This theory is fundamental for today Chemistry and 
Quantum Physics. Our hypothesis is that neurons associated 
to a certain group transform the signal they receive 
according to certain coefficients of matrices in such 
representations. To understand the origin of this hypothesis, 
note that space-time is defined by a kind of invariance 
(depending on context), thus a coherent action must be 
prepared first in invariant terms. Then it comes a 
computational reason: the discrete functioning of neurons 
must be compatible with the mentioned invariance. And 
working in the dual world of coefficients of representations 
is a solution.  
This hypothesis is an occurrence of the composite variables 
[18]. We show in section III how it relates to Bayes analysis. 

Let us describe with more details the notion of invariant 
receptive fields. In the case of the visual cortex we are 
familiar with the model (NLL) formula, which gives the 
probability of responses of a cell in function of the image 
stimulus as a linear operator, with kernel K, followed by a 
static non-linearity in sigmoïdal form σ. For each simple 
subunit 0a the formula for the probability of modulation of 
response at time t for the moving image is 

                      
where the hat symbol denotes the Fourier transform and the 
index t denotes a delay by t. The letters 0 0 0 0, , ,ξ η ω ϕ  
denote the preferred frequencies (spatial and temporal) and 
the preferred phase, respectively, cf. [19]. Thus precisely 

 

 
 

This classical formula is nothing else that commutative 
harmonic analysis, it describes how the signal is captured in 
frequency terms in a space-time windows. This corresponds 
to the fact that the translations group (in visual plane here) 
being commutative, its irreducible representations are one-
dimensional, which is no longer true for the displacements 
group or in the case of Galilean invariance. Note that the 
reality of the frequency vector guaranties the unitarity. 

Remark: the interpretation of the response formulas by 
harmonic analysis comes from Gabor, cf. [20]. Several Lie 
groups were considered in vision theory, for instance the 
Heisenberg group (Kalisa, Torresani [26]), the plane 
displacements E(2), (Sarti et al. [25], Bressloff et al. [27]), 
the plane hyperbolic group (Chossat and Faugeras [24]). In 
all these studies the wavelet aspect is fundamental. It is 
known that wavelets have much to do with information 
theory. 
 

II. THE GALILEAN INVARIANCE 
 
The Galilée group G acts on the four dimensional space-

time  R³×R. Imagine a frame, made by an origin in this 
space-time, and by four vectors, three in space and one in 
time (pointing to the future). The full group G is formed by 
products of instantaneous translations of the origin in space-
time (four parameters), of rotations (three parameters) and of 
constant velocity translations or gliding:  

 
The subgroup generated by rotations and gliding only is 

called the linear group 0G . This is the subgroup sensed by 
the vestibular end organs, through infinitesimal variation. 

The first ingredient of a receptive field for a cell c  is a 
pair ( ,c cKσ ) of one sigmoidal real function of one real 

variable and one real smooth function on G R× , such that 
the activity of c  at time t induced by a distribution μ(t) of 
movements stimuli is given by the formula 

 
(In general μ(t)  is concentred on a given element in G .) 

Our suggestion is that cK  is given by a coefficient in an 

irreducible unitary representation of G , for maximizing 
invariance and information together. 

The unitary representations of G or 0G  were determined 
by Ito and Mackey in the fifties. Cf. [22]. 
Example, in the case of  0G  we choose a real number ρ, the 

Hilbert space H of the linear representation is the space of 
square integrable functions on the 2-dimensional sphere,  if g 
is the product of a rotation R and a gliding of velocity vector 

a , we have the following formula 
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The standard coefficients in this case are associated to the 
basis of H  made by spherical harmonic functions ,l kP , cf. 

[21]. In the simplest cases, where one of the basis vector is a 
constant polynomial, the unitary coefficients do not depend 
on the rotation R, and they are equals to products of one 
polynomial in the coordinates of the direction α  of the 

velocity a  with a Bessel function of the product of ρ  with 

the norm r of a . This gives formulas well adapted to 
describe the gravito-inertial only cells. The structure of these 
coefficients can explain the phenomenon discovered by 
Angelaki et al. [4] of a non-zero response with advanced 
phase π/2, that are elicited along the direction orthogonal to 
the direction of maximal sensitivity. In fact we have 

 
where l kC −  denotes a Gegenbauer polynomial, for instance 

 
thus, for 2, 1l k= = , for instance, we get for the 
coefficient a dependence in  the norm r , a principal 
dependence in the z  direction , but also a secondary 
dependence in the transverse plane ,x y  with an imaginary 
coefficient, that generates a phase difference in this direction 
for the receptive field after taking the real part, and applying 
the non-linearity. 
Let us describe the general formula of the RFs: we choose a 
standard function 0 ( )K t on the group G , like a Gaussian, 

centred on the identity element of G , explicitly dependent 
on time t , we also choose an irreducible unitary 
representation ( )tλ , in general dependent on t , and two 

vectors 1( )tψ , 2 ( )tψ  in the Hilbert space H of the 

representation ( )tλ .  Then the proposed formula is 

 

 
integrating the product of an unitary coefficient with the 
decentred Gaussian, that is a time dependent wavelet for the 
group G . 
The representation  ( )tλ  plays the role of the preferred 

frequency, while 0 ( )K t  is the spatial envelop of a  Gabor 
wavelet, giving the size to the window the neuron has on the 
world. The vectors 1( )tψ , 2 ( )tψ play the role of a phase, 

they are necessary when G is non-abelian, so they are new 
elements with respect to the abelian case of visual cells.  
 
Remark: in the simplified case of 2D analysis, the response 
to a stimulus of frequency ω  in a direction θ  is given by: 

 
where mJ  is the Bessel function of order m . 

At first order approximation in the constant 0ρ  this gives: 

 
And when the kernel 0k  is of Dirac type 0( )t tδ − , we find 
the classical model: 

 
However, when 0k  is a real Riemann-Liouville derivative of 

real order 0D , we find a "dynamical response": 

 
This response is typical of a vestibular kinetic neuron. The 
usual characteristics are thus the gain 0ρ , the phase delay 

0't and the dynamical index 0D . 
 

An important property, for the information 
decomposition, is the orthogonality of the unitary 
coefficients. When the group G is compact, commutative or 
not, the Schur and Weyl theorems affirm that a natural 
orthogonal basis of the algebra of functions on G  is formed 
by the coefficients of the set of non-isomorphic irreducible 
unitary representations of G , i.e. the group applications 
from G  to any complex unitary group ( )U n  of complex 
n n×  matrices M, verifying M*M=Id. However the groups 
that are the most interesting for us are not compact Lie 
groups, except for rotation only cells, which exist but 
represent a small percentage of cells. The interesting 
irreducible unitary representations of these groups are 
infinite dimensional. But for the Galilée group G , the 
theorem also holds: the coefficients of the unitary irreducible 
representations form a generating system of the functions on 
G , this is the content of the Plancherel formula, and these 
coefficients have also strong orthogonality properties 
(Harish-Chandra, cf. [22]), making them well adapted for 
information decomposition. 

 

III. BAYESIAN COMPUTATIONS 
 
The Bayes theorem gives a linear recurrence relation in 

time for the subjective probability tU  (for convenience we 
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will use non-normalized probabilities i.e. finite measures) of 
an external world variable tξ  or a desired action tα . The 
coefficients of the relation are the ratios of an activation 
probability by an a priori probability on tξ  or tα  (Laurens-
Droulez, [17], Angelaki et al. [15]). In our case, we can 
consider the external stimulus as a transition between frames 
in the group of Galilée, from an element g to an element h , 

given a sequence of vestibular activities (0)S ,..., ( )S t . If 
we denote by ω  the noise in vestibular transduction, then 
the recurrence relation can be written: 

 
The letter S  represents the collection of state variables of 

the N neurons of the CNS that are involved: 0S , 1S ,..., NS  , 

then tR  is a joined probability of N random variables. 

Now we propose to replace the sum over h  in the group G  
by a continuous integral, this corresponds to view neurons as 

working in the dual space Ĝ of representation’s coefficients. 
If the invariance is perfect, ( | , , )tR S g h ω  only depends 

on the ratio 1gh−  in G . In this case we obtain what is called 
a convolution operator. The theory of linear representation 
tells us that after a generalized Fourier-Plancherel transform 
this convolution is replaced by a matrix multiplication 
system. This fits well with the observation that often the 
cortical neurons are disposed in sub-populations 
corresponding to the same generalized frequency. That is 
suspected to simplify the computation. Our model suggests 
in what sense the simplification is achieved: this is to 
represent matrices by connections. It appears also that the 
neurons are numerous for invariant computation. 

Because the coefficients of unitary representations are 
oscillatory operators, the CNS has to work with adapted 
oscillations, in a dual world, as advocated by R.Llinas [23]. 
The reflected properties of space-time in the neuronal 
operators are totally transformed, in this dual world of 
coefficients, but the space-time invariance is preserved. 
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