
 

  

Abstract—Electrocorticography (ECoG) is an emerging tool 
to map brain functions in the context of neurosurgical 
intervention. Previous mapping methods based on the event 
related power spectrum are prone to noise. To improve the 
robustness of cortical function mapping, general linear model 
(GLM), which has been widely used in the analysis of 
functional magnetic resonance imaging (fMRI) data, is applied 
to bandpass filtered ECoG signals from each electrode. For a 
specific task, electrodes with best fitting parameters of the 
signal are identified, and the statistical significance of the 
fitting is mapped on the standard 3D brain model to provide a 
personalized map of sensorimotor functions. With the analysis 
of four patients' data, the proposed approach yields consistent 
results with those obtained by electrical cortical stimulation 
(ECS), while showing promising performance against noise. 

I. INTRODUCTION 
o retain the normal brain function while resecting the 
epilepsy focus is a challenge in neurosurgery. Electrical 

cortical stimulation (ECS) is the gold standard for human 
brain function mapping in the context of neurosurgical 
intervention [1]. However, the post-surgery ECS sometimes 
may have false negative results or induce after-discharge.  
Besides, it also requires the operator to have rich clinical 
experience and the patients to fully cooperate during the test. 
Previous reports suggested that during limb movements, the 
spectral pattern of electrocorticography (ECoG) exhibited 
event-related desynchronization (ERD) in the alpha band [2] 
and event-related synchronization (ERS) in the gamma band 
[3]. The distribution of gamma ERD is more localized than 
the alpha ERD, hence the power change in the gamma band 
is more useful for brain function mapping. For example, 
ECoG high-gamma features have been employed to localize 
the sensorimotor areas of hand, tongue, foot [4], and the area 
for language processing [5]. 

However, due to the recording system noise, the 
environmental noise and the spike activity from epilepsy 
focus, the spectrum of ECoG sometimes shows aberrant 
patterns. As such, the results are unreliable if the mean 
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power in the high-gamma band is simply used for cortical 
function mapping. To address this issue, the matching 
pursuit algorithm was employed to investigate the neural 
correlates of high-gamma oscillations in macaque local field 
potentials [6]. However, the algorithm was unable to 
distinguish between the task related brain activity and the 
activity induced by the environmental noise.  Another line of 
studies used competitive expectation-maximization (EM) 
algorithm to estimate a gaussian mixture model (GMM) 
based on resting-state ECoG data [7-8]. Although it could 
reduce the effects of both the system and environmental 
noise, a training data set and an additional optimization 
procedure are required to determine the order of GMM. 
Moreover, the relationship between the GMM model 
components and brain activities is ambiguous.  

Statistical parametric mapping (SPM) is a statistical 
framework based on general linear model (GLM), which can 
be used to detect task-related activations in brain areas. To 
date, SPM has become the most widely used software for 
fMRI data analysis [9]. In this study, GLM as the 
cornerstone of SPM is applied to the ECoG data analysis to 
find the relationship between a task sequence and the power 
change in certain frequency bands. By using this method, the 
statistical parametric maps for hand, tongue, foot 
movements are obtained from the ECoG data of four 
epilepsy patients. Compared with ECS, the GLM method 
shows  higher robustness in cortical function mapping. 

II. MATERIALS & METHODS 

A. Subject 
Four subjects with intractable epilepsy underwent 

temporary placement of a subdural electrode array to 
localize the epileptic seizure focus before surgical resection. 
The locations of the electrode arrays were determined 
according to clinical needs. Table I shows the detailed 
information of the subjects. All the four subjects had 
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TABLE I 
CLINICAL DATA OF THE PATIENTS 

Patient Age Gender Handedness Grid Electrodes

1 21 Male R Rt, Rp 64 
2 9 Male R Lf, Lp, Lt 96 
3 16 Female R Rf, Rp, Ro 96 
4 14 Female R Rf, Rp 80 
R=right; L=left; f=frontal; p=parietal; t=temporal; o=occipital
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electrodes placed over the sensorimotor cortex. The subjects 
gave informed consent prior to participation and the 
experiment protocol was approved by the institutional ethics 
committee. The tests in this study were carried out during 
stable interictal periods; there were no epileptic seizure 
within two hours before or after the tests. Each subject’s 
electrode location was projected on an MNI standard 3D 
brain model by using lateral skull radiographs and a Matlab 
toolbox LOC [10]. 

B. Electrical Cortical Stimulation 
ECS mapping used the Ojemann cortical stimulator with 

1s to 5s trains of 60Hz alternating-polarity square-wave 
pulses. For each electrode pair the stimulus intensity started 
from 1mA and increased in a 1mA interval until one of the 
following requirements was fulfilled: (1) the subject 
reported any unpleasant sensations (2) the stimulus intensity 
increment reached 15mA (3) disruption of motor function 
was observed on the subject during voluntary movements (4) 
after-discharge was induced. 

C. Experiment Protocol & Data Collection 
There were nine blocks in the experiment, each lasting 

30s. The subject was instructed to relax for 10s at the 
beginning of each block, and then to execute a voluntary 

movement task of the contralateral fingers, tongue or 
bilateral toes for 20s. The three types of movement task 
repeated three times in an alternated fashion. Fig. 1a shows 
the scheme diagram of the task sequence. The ECoG data 
were recorded by a long-term monitoring EEG system 
(Bio-Logic®, San Carlos, USA) sampled at 1024Hz, along 
with two digital cameras recording subjects’ behavior from 
different angles simultaneously. The ground and reference 
electrodes were placed on the scalp. During the test, the 
subjects followed the instruction presented on the screen to 
do a designated motor task or to relax. The trigger signal for 
each screen instruction was delivered to one channel of the 
amplifier through a photocoupler to synchronize the 
recording. 

D. Analysis 
Y ൌ Xβ  Ԗ    (1) 

The general linear model (GLM), which has been widely 
used in fMRI studies, is employed to analyze the ECoG data. 

Eqn.1 gives the basic equation of GLM. In fMRI data 
analysis, Y is the response variable (BOLD signal) of each 
scan. X, which has one row per observation and one column 
per stimulus type, is the design matrix. In this study, Y is the 
power envelope of one ECoG electrode in a certain 
frequency band at the sample point J. The envelope is 
defined as the square of the band-pass filtered data. X is 
formed similarly as in fMRI studies. X has three columns 
indicating the timetable of the three types of voluntary 
movement, and a constant column( Fig. 1b). β is the vector 
of the model parameters that need to be estimated. The error 
term � consists of independent and identically distributed 
normal random variables with zero mean and variance σ2 
[11]. Consequently, the GLM in our study can be written in 
the following matrix form: 
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  (2) 
β can be estimated by using ordinary least squares method 

[11]. The t-statistic and p-value of each electrodes’ β can 
then be computed using the t-test for β. For each electrode, 
we obtain thand, tfoot and ttongue for β1, β2, β3, respectively. The 
corresponding p-values are also calculated to threshold the 
t-statistics: if the p value is larger than 0.05, the 
corresponding t-statistic of that recording electrode is 
replaced by zero. Finally, for the same task, the t-statistics 
are normalized among all the electrodes to yield more 
prominent patterns: 

thandi =
thandi

max (thand )
~

  (3) 
where                                                      , n denotes the number 
of electrodes,          and            were calculated in a similar 
way.  

 The high gamma band is typically defined as the 
frequency band above 60Hz [3]. In case of possible 
influence of line power harmonics (100Hz, etc.), we use the 
power between 60Hz and 90Hz for high gamma GLM 
mapping. After bandpass filtering and the envelop extraction 
of the ECoG raw signals, the t-statistics of the three tasks 
(hand movement, tongue movement and foot movement) are 
computed in conjunction from GLM model. The larger the 
absolute value of a t-statistic, the more significant change is 
present at the corresponding electrode. 

There have been several studies using power spectral 
density (PSD) method for functional mapping based on high 
gamma ECoG signal [12-14]. In these studies, functional 
areas are distinguished based on the difference between the 
average PSD during tasks execution and during relaxation.  
For comparison, power spectral density (PSD) method were 
also applied to our ECoG data. All data analysis programs 
used in this study were developed in MATLAB (Mathworks, 
MA, USA).  

Hand

Tongue

Foot
+

+

+

0
10

30
40

60
70

90

Time(s)

…

X=

(a) (b)  
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III. RESULTS 

A. Sensorimotor Cortex Mapping 
GLM mapping results of the four subjects are shown in 

Fig. 2. The brain topographies are obtained by 
superimposing the normalized t-statistics on the MNI 
standard brain model. The bar graphs next to each 
topography indicate the normalized t-statistic of each 
electrode in the order of the electrode number. 

From the t ̃ distribution plot on MNI 3D brain model, it 
can be seen that the GLM mapping results are consistent 
with the physiology-anatomy locations corresponding to the 
tasks. The areas with significantly high t ̃ values are 
concentrated at those plausible functional centers on 
sensorimotor cortex, which also matches the previous 
findings in an fMRI study [15]. Moreover, the task related(R) 
areas and unrelated (NR) areas can be obviously 
distinguished from GLM mapping.  Due to the lack of 
electrodes placed over foot motor cortex area, no significant 
function-related results of the foot movement are available 
based on the GLM model, and thus the distribution of t ̃ is 
not shown. 

B. Comparison of GLM Mapping and ECS Mapping 
Comparing the ECS mapping with GLM mapping for the 

tongue/hand functions of Subject 3, the results show good 
consistency. Electrodes involved in positive responses 
(tongue being numb or hand being tremble) during ECS 
matches well with the electrodes with significantly high 
t-statistics obtained by GLM (see Fig.2).  

C. Prominent Frequencies of Different Cortical 
Functions 
To observe frequency response patterns, we obtain the 

power envelopes in different bands and then fit them with 
GLM to compute the t-statistic for each band.  There are 12 
subbands selected in this study, including the theta (4~7Hz), 
alpha (8~13Hz), beta (15~30Hz), low gamma (30~60Hz) 
and high gamma (60~120Hz, with 10Hz for each bin) bands.  

GLM mapping results shown in Fig. 3 demonstrate 
distinguishable spectral features. The positive t-statistic 
indicates significant power increase in the gamma band 
when executing different tasks. By contrast, the negative 
t-statistic in the alpha (8Hz~13Hz) and theta (4Hz~7Hz) 
bands indicate significant power decrease in these two 
frequency bands during motor tasks, which is consistent 
with the findings in previous studies on ECoG [2-3].  

D. Comparison of the GLM and PSD methods 
An ECoG data set with 90s duration (there is an abrupt 

noise around 40s in the signal) was used to investigate the 
dependency of GLM and PSD on the data length. For this 
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Fig. 3. T-statistic in each frequency band of the two electrodes with max 
t-statistic in High Gamma band (Subject 2 in Fig. 2) during hand movement 
task  and tongue movement task. 
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Fig. 2. GLM mapping results of the functional areas for  hand (left column) and tongue (right column). Comparison between normalized t-statistics from 
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data set the data length is varied from 30s to 90s with a 1s 
interval, and in each case these two methods was applied to 
obtain the event-related spectral power and t-statistic, 
respectively.  

Compared with the PSD method, the advantage of GLM 
model is its better tolerance to noise. Fig. 4 shows that the 
t-statistic based on GLM algorithm is less influenced by 
noise than PSD method. As the red dashed line indicates, 
simply using average PSD in gamma-band might lead to 
false positives when there is strong noise present, such as the 
occasional spectral impulse due to the displacement of 
electrodes, movement of subjects or environmental noise. At 
the early stage of the task, the strong noise leads to an abrupt 
change in high-gamma band and increases the average PSD 
of a task-unrelated electrode, which is even higher than the 
average PSD of task-related electrode. This type of false 
positive can hardly be prevented, but it can be smoothed out 
after averaging with long period of signals with better 
quality or can be removed manually by careful visual 
inspection. 

By contrast, the t-statistic from GLM algorithm, shown as 
blue curves, is merely slightly affected by the occasional 
occurrence of large noises. Moreover, the discrimination of 
the t-statistic between task-related electrodes (blue-solid) 
and task-unrelated electrodes (blue-dash) is identically good 
under all the cases. 

IV. DISCUSSION & CONCLUSION 
GLM is a statistical model with the design matrix 

constructed by the task sequence. By applying regression 
analysis on the model, for each electrode we can obtain a 
t-statistic that represents the significant brain activities under 
different tasks. As such, the adverse effect of the noise is 
largely avoided and the result of the cortical function 
mapping is rendered more stable. In addition, the t-statistic 
from regression analysis can also be used to assess whether 
the power in certain frequency band rises or falls 
significantly along with the task. This may provide a new 
tool to explore oscillatory networks underlying different 
cognitive tasks [16]. Moreover, we can obtain the t-contrast 
map by using GLM to see the ECoG power contrast between 
different conditions in an experiment, as that has been done 

in fMRI imaging. 
 In future studies, it is presumable that the trial-based 

design would produce even more robust result and lead to 
higher t-statistics. In this respect, the high temporal 
resolution of the ECoG offers the possibility of getting a 
time-frequency featured template of each task from the 
trial-based design. This template function could play a 
similar role as hemodynamic response function in fMRI data 
analysis, which may yield more accurate mapping of cortical 
functions.  
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