
MEDIFRAME – Remote Volume Rendering Visualization Framework

Roland Unterhinninghofen, Frederik Giesel, and Rüdiger Dillmann

Abstract— Tablet computers, netbooks, and other mobile
devices find their way into medical applications. However, ad-
vanced visualization such as volume rendering of tomographic
data is too demanding for these devices. Hence the concept
of remote visualization gains attention again. Using powerful
servers views are rendered and transmitted as video-stream to
the mobile devices in real-time. In this article we present a new
extension to our software framework MEDIFRAME allowing
easy setup of remote visualization in the medical imaging
domain. We give an overview of the general visualization
architecture and explain the remoting component in detail.
Tests from different cities in Europe revealed good latency
and rendering times as well as a surprisingly smooth user
experience. We conclude that our remote visualization frame-
work is a handy, functional extension to medical visualization
applications.

I. INTRODUCTION

Visualization is fundamental when working with medical
imaging. It goes from as simple tasks as visualizing 2D
tomographic images, over more sophisticated 3D volume
rendering to complex scenes combining images with surface
objects from segmentation, markers or glyphs. During the
last decade a large number of medical visualization and
image-processing toolkits and software have been devel-
oped. Besides commercial software from imaging equipment
manufacturers and other companies, various freely available
software exist for research purposes. Among the latter there
are well-known tools such as 3D-Slicer [1], MevisLab [2],
OsiriX [3], MITK [4], and our own MEDIFRAME [5]. These
tools typically build upon or integrate toolkits like the
Visualization Toolkit (VTK), the Insight Toolkit (ITK), or
the Dicom Toolkit (DCMTK).

Usually the software runs on standard PC hardware;
some more demanding applications extensively use parallel
execution on multi-core CPUs or benefit from GPU acceler-
ation. However, with recent tablet computers, smartphones,
netbooks, and other light weight computers finding their
way into medical application new challenges arise. There
are in fact some dedicated applications, e.g. OsiriX for
iPad showing 2D tomographic images. But although these
devices are equipped with increasingly powerful processors
and even 3D graphics capabilities, their computational power

This work was not supported by any organization
R. Unterhinninghofen is with Institute for Anthropomatics,

Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
roland.unterhinninghofen@kit.edu

F. Giesel is with Department of Radiology, Univer-
sity Hospital of Heidelberg, 69120 Heidelberg, Germany
f.giesel@med.uni-heidelberg.de

R. Dillmann is with Institute for Anthropomatics, Karls-
ruhe Institute of Technology, 76131 Karlsruhe, Germany
ruediger.dillman@kit.edu

is still far from sufficient for advanced interactive medical
visualization, especially when it comes to volume rendering.
Hence the concept of remote visualization gains importance
again.

With remote visualization powerful servers render views
and transmit them as video-stream to a client computer in
real-time. While this concept itself is not new, there is little
dedicated to mobile devices in clinical applications. There
are a number of solutions developed for general purpose sci-
entific data visualization, e.g. the Chromium renderserver [6].
Also, some remote desktop solutions such as VirtualGL for
Unix allow remote visualization with full OpenGL support
[7]. The standard Microsoft Windows remote desktop, on the
contrary, does not, as it involves a special graphics driver
without GPU support.

However, none of the toolkits and tools commonly used in
the medical image visualization and processing community
provide first-class support for developing remote rendering
applications. Consequently we present our approach to inte-
grate a remote visualization API into our software framework
MEDIFRAME.

II. METHODS
A. Overview

MEDIFRAME is a software framework providing high-
level programming models for the development of medical
applications particularly in the field of tomographic image
processing and visualization. With its current, third gener-
ation it has moved away from pure C++ to a mixture of
C#, C++/CLI, and native C++ based on the Microsoft .NET
framework. It therefore benefits from the achievements of
modern virtual machines such as reflection as well as from
modern syntax. Also, it profits by the huge and mostly
consistent libraries including string handling, files, XML,
networking. Finally, with Windows Presentation Foundation
(WPF) a GUI framework is available that may appear overkill
for research applications but offers a handy programming
model and appealing user interfaces.

For 3D visualization or data processing, however, ME-
DIFRAME relies on VTK. For performance reasons VTK
classes are not simply wrapped in .NET classes. Instead a
new architectural layer above VTK is created where classes
typically integrate several VTK classes and hence represent
discrete functional units. These classes are implemented in
C++/CLI – the managed derivative of C++ – as it allows
mixture of native and managed code at ease. However, care
was taken that transitions from managed to native code and
vice versa do not occur in extensive loops which might
decrease performance considerably.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 2368

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

MEDIFRAME consists of a growing number of subframe-
works. Two of them, namely the visualization framework and
the remote framework are presented in the following.

B. Visualization Architecture

The visualization architecture aims to build a bridge
between WPF and VTK. WPF on the one side is designed
for graphical user interfaces. Unlike former GUI libraries it
does not use GDI but relies on DirectX. The whole UI is
represented as a tree of visual objects (so called visuals)
composing various graphical primitives. Using templates
and styles it separates appearance and business logic and
gives ample control over the design. Typically WPF UIs are
defined using the eXtended Application Markup Language
(XAML), an XML-based language to instantiate hierarchical
structures of classes and initialize their properties. WPF
support for 3D visualization is currently rudimentary and
does not appear appropriate to build a medical visualization
framework on.

VTK on the other side is designed for (three dimensional)
visualization of data such as volume images, meshes and
geometric primitives based on OpenGL. It defines a virtual
world and a camera model to view it. Datasets are processed
through pipelines of filter instances that typically end in a
pair of vtkMapper/vtkActor instances to visualize them.

One issue when integrating VTK with WPF is the so called
air space problem: OpenGL and hence VTK is rendered into
classic Win32-Windows which, however, may not overlap
regions controlled by WPF. MEDIFRAME provides two so-
lutions to this problem. The direct solution makes use of the
WPF class WindowsFormsHost which hosts a Windows
Forms control that in turn has a vtkRenderWindow as its
child. The second, indirect solution stems from the remote
visualization part: it uses VTK offscreen capabilities to
render into memory. The resulting image is then displayed
through standard WPF classes. While slightly slower the sec-
ond solution has several advantages: (1) it avoids flickering
when resizing the window, (2) it allows true overlapping
of other WPF controls over the rendered image, (3) the
rendered image acts as full WPF control and takes part in
all transformation operations etc.

Fig. 1 gives an example how to define 2D and 3D scenes.
Viewport2D and Viewport3D are the root instances
which are WPF visuals and may hence be integrated into
arbitrary WPF GUI. The Frame2D defines the slicing plane
to be displayed (position and normal in world coordi-
nates). Properties of child visuals such as PlaneVisual
or LabelVisual are directly assigned in XAML. For
the ImageVisual a concept called binding is used to
assign the image data (Source property) and color transfer
function (ColorMapper property). The data is taken from
an object that is assigned to the DataContext property
of the root object which is then inherited by all children.
The desired source property is defined using the Path
expression. Note that both ImageVisual objects bind the
same image object; also note that the light blue plane is the
same that controls Frame2D. In a real application these and

more properties would be bound to a common model object
to allow interactive dependencies between 2D and 3D views.
Also templates would help to build common visualization
scenarios. However, this topic is beyond the scope of this
article.

C. Volume Rendering

The term volume rendering subsumes a number of tech-
niques to render tomographic images three-dimensionally. In
our context we use it synonymously to volume ray casting
which is a volume rendering technique often applied to CT
data. It basically computes rays of sight being continuously
absorbed while travelling through the volume.

Since ray casting is a computationally demanding process
it is particularly eligible for remote visualization where
powerful server hardware performs the rendering and sends
the image to light-weight clients. Because the ray casting al-
gorithm is highly parallelizable, it is very often implemented
on graphics hardware (GPU). In MEDIFRAME we integrated
an own implementation based on GLSL (OpenGL Shading
Language) which can be used in remote visualization [8].

D. Remote Visualization

Remote visualization basically means rendering a view on
a server and transmitting the resulting pixel image to a client
computer. In view of application design the question arises
what parts of an application window are remotely rendered.
In the remote desktop scenario the application completely
runs on the server and its window is transmitted as a whole.
Alternatively, the basic GUI is rendered on the client-side
and only the computationally expensive parts are rendered
remotely – in our case complex 2D or 3D visualizations of
medical image data. This approach resembles Rich Internet
Applications (RIA) where GUI and its direct application
logic is handled on the client side while complex data
processing, e.g. using a database, is done on the server side.

MEDIFRAME deals with remote visualization on the view-
port level, i.e. each Viewport instance is rendered and
transmitted separately. It hence relies on the visualization
architecture described above and additionally introduces the
following concepts:

• A Connection object to handle a socket connection
• A Server to listen to incoming connections and to

initiate a connection
• A RemoteApplication object to manage the whole

application logic and to hold Viewport objects
• A Session object to store the current state
In a WPF desktop application a Window instance is typi-

cally the root object of the GUI tree. However, in the remote
visualization scenario there is no GUI on the server side and
the GUI tree reduces to a number of Viewport instances.
They are registered directly with RemoteApplication
that acts as root instance in a MEDIFRAME remote scenario.
While properties of the visuals could be directly bound
to properties in the RemoteApplication, an additional
Session object is provided to bind these properties. The
Session object serves as DataContext of the viewports

2369

xmlns:scene="clr-namespace:Mediframe.Scene;
assembly=Mediframe.Scene.Satellite"

<scene:Viewport2D>
<scene:Frame2D Plane="0,0,80,0,0,1">
<scene:ImageVisual Source="Binding Path=Img"

ColorMapper="Binding Path=CM2D"
InterpolationMode="Linear" />

<scene:PlaneVisual Plane="100,0,0,1,0,0"
SurfaceColor="LightGreen"/>

</scene:Frame2D>
</scene:Viewport2D>

<scene:Viewport3D>
<scene:Frame3D>
<scene:ImageVisual Source="Binding Path=Img"

ColorMapper="Binding Path=CM3D"
Raycaster="GLSL_2Pass"/>

<scene:PlaneVisual Plane="0,0,80,0,0,1"
SurfaceColor="LightBlue"/>

<scene:PlaneVisual Plane="100,0,0,1,0,0"
SurfaceColor="LightGreen"/>

<scene:LabelVisual AnchorPosition="86,57,90"
Position="800,600" LeaderColor="Orange"
Foreground="Blue" Background="Orange"
Padding="2" FontSize="16"
Text="A. radialis indicis"/>

</scene:Frame3D>
</scene:Viewport3D>

Fig. 1. Example of scenes decribed in XAML. Left: 2D view, Right: 3D view. Note dependencies between both views.

and hence, by simply swapping the DataContext, multi-
ple sessions, e.g. from different users, may share the same
RemoteApplication and Viewport instances. This is
particularly useful when a large number of users would
outrun the server’s memory capacities.

The programming model to set up a remote application
server in MEDIFRAME is hence fairly simple:

1) Define scene tree and register with
RemoteApplication. This can be done in a
single XAML file.

2) Define session class and bind properties to visuals.
3) Setup server adress

In earlier versions we used H.264 or WMV1 video streams
to encode and transmit the rendered views [9]. However, the
encoding is time-consuming and introduces synchronization
problems. We finally found it advantageous to encode and
transmit each frame as separate JPEG image. While this
slightly increases the network load it significantly reduces
complexity and gives better control over image quality
in static and dynamic, i.e. interactive, display. With the
Viewport class inherently producing a pixel image through
VTK/OpenGL offscreen rendering, encoding is performed

through .NET JPEG-Encoder. The resulting data is sent to
the client over the socket connection.

When a client connects to the server, a new
RemoteApplication instance is created and a new
socket connection is established. Each Viewport is
rendered initially and sent to the client. When the client
sends mouse and keyboard events to the server, they are
routed to the respective viewport where they are processed.
The rendering itself, however, is not started immediately
when an event has been processed. Instead there is a
rendering cycle with a period of typically 40 ms that
synchronously renders invalidated views. This is to reduce
computational and network load and to avoid events to
queue which would make the rendering to lag behind.

The client is currently implemented as Microsoft Sil-
verlight application. Each viewport that is defined in the
remote application is represented by a dedicated control
based on the Canvas control. When the Canvas is resized
the client sends the new size to the server. The server,
however, does not necessarily render the image in the desired
size; it may use other criteria – e.g. server load or algorithms
optimized for specific sizes – to determine the actual size.

2370

TABLE I
ROUND TRIP TIMES FROM DIFFERENT LOCATIONS IN EUROPE.

Location Distance Network Time
Karlsruhe 200 km WAN 71± 35 ms
Heidelberg 175 km WAN 74± 39 ms
Munich 150 km DSL 92± 48 ms
Siegen 270 km DSL + WLAN 141± 58 ms
Basel 330 km DSL + WLAN 136± 53 ms
Malta 1530 km DSL + WLAN 487± 82 ms

Hence, the client potentially needs to zoom the received
image to fit into the canvas. Since (mouse) coordinates on
the client and on the server side are consequently not the
same, they are normalized before transmission.

III. RESULTS

For evaluation purposes we set up an application that
displays a CT dataset and a numbers of labels (similar to
the example above). It was installed on a dedicated server
running Microsoft Windows Web Server 2008 R2, equipped
with one Intel Xeon W3565 CPU (4 Cores, 8 Threads, 3.2
GHz), 16 GB RAM, and two GeForce GTX 480 graphics
boards. The server was housed in a data center close to the
city of Nuremberg, Germany.

On the client side we used a notebook (Intel Core2
T7200 CPU and Nvidia Geforce Go 7400 graphics) running
Microsoft Windows 7 at 1280 x 800 pixels resolution.

Two aspects determine speed and responsiveness of the
remote visualization. The first is the time to render the view
and to encode the resulting image as JPEG. The second is
the time to transmit user events from client to server and to
transmit the image frames from server to client.

Rendering and encoding time depends on image size and
rendering quality which is dynamically adapted to obtain
interactive rates. As mentioned above rendering is clocked
with 40 ms. A dataset of 512×512×400 voxels was rendered
smoothly without considerably degrading image quality.

Network times depend, among other factors, on the net-
work adapters used, on the distance between client and
server, and the number of routers in the line. We did,
however, not evaluate each of these factors separately but
measured the entire round trip time, i.e. the time to send a
mouse event to the server, to render and encode the image,
and finally to send it to the client. These measurements
were performed from different locations in Europe using
either WAN or DSL connections, the latter partly combined
with WLAN as it is often found at home or in public
places such as hotels. Mean time and standard deviation were
computed from 100 measurements per location. The results
are shown in table I. Given distances are air-line distances
to Nuremberg, Germany, where the server was housed.

Round trip times obviously increase with longer distances.
Also DSL connections tend to introduce higher variations.
However, even with rather high values for Malta (487 ±
82 ms) the user experience was still close to acceptable.

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

We presented a remote visualization framework dedicated
to medical visualization and particularly appropriate for
remote raycasting of tomographic data. While the basic
principle is not new, our solution offers a comprehensible
and easy-to-use API entirely integrated into MEDIFRAME. It
benefits from its interface to the well established VTK and
from the powerful .NET-Framework. Also, applications can
be developed so that most parts can be identically used in
local and in remote MEDIFRAME applications. However, the
usability of the API needs to prove in practice.

Results reveal a very good responsiveness – qualitatively
as well as quantitatively. Adaptive rendering effectively re-
duces processing and transmission times.

B. Future Works

Our solution has a number of limitations to be adressed in
future. First of all it does not yet exploit the power of multi-
GPU systems because GLSL is limited to the primary GPU.
To overcome this limitation a new CUDA implementation
of the raycasting algorithm is being developed. It will allow
multiple clients to access the server synchronously and have
it render different views at the same time.

To further speed up the system, image compression could
be implemented on the GPU as-well. However, loss in image
quality from compression and intermediate resizing steps
needs to be minimized.

Finally it will be interesting to further optimize server-
side computation and adaptation of rendering quality. Also
different network conditions, including inter-continental con-
nections, and different client computers will be evaluated.

REFERENCES

[1] S. Pieper, B. Lorensen, W. Schroeder, R. Kikinis, ”The NA-MIC Kit:
ITK, VTK, Pipelines, Grids and 3D Slicer as an Open Platform for
the Medical Image Computing Community” Proceedings of the 3rd
IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, 2006, vol. 1, pp. 698–701

[2] M. König, W. Spindler, J. Rexilius, J. Jomier, F. Link, and H.O.
Peitgen, ”Embedding VTK and ITK into a visual programming and
rapid prototyping platform”, SPIE Medical Imaging, 2006.

[3] A. Rosset, L. Spadola, and O. Ratib, ”OsiriX: An Open-Source
Software for Navigating in Multidimensional DICOM Images”, J.
Digit. Imaging., 2004 vol. 17(3), pp. 205-216.

[4] I. Wolf, M. Vetter, I. Wegner, T. Böttger, M. Nolden, M. Schöbinger,
M. Hastenteufel, T. Kunert, H.P. Meinzer, ”The medical imaging
interaction toolkit”, Med. Image. Anal., vol. 9(6), 2005, pp. 594–604.

[5] S. Seifert, R. Kussaether, W. Henrich, N. Voelzow, R. Dillmann,
”Integrating Simulation Framework MEDIFRAME”, Proceedings of
the 25 IEEE Engineering in Medicine and Biology Conference, 2003,
pp. 1327-1330

[6] B. Paul, S. Ahern, E. Wes Bethel, E. Brugger, R. Cook, J. Daniel, K.
Lewis, J. Owen, and D. Southard, ”Chromium Renderserver: Scalable
and Open Remote Rendering Infrastructure”, IEEE Tran. Vis. Comput.
Graphics, vol. 14(3), 2008, pp 627–639.

[7] D.R. Commander, ”VirtualGL: 3D Without Boundaries – The Virtu-
alGL Project”, http://virtualgl.sourceforge.net/, 2007.

[8] S. Suwelack, E. Heitz, R. Unterhinninghofen, and R. Dillmann, ”Adap-
tive GPU Ray Casting Based on Spectral Analysis”, Proceedings of
Medical Imaging and Augmented Reality (MIAR), 2010, pp. 169-178

[9] S. Suwelack, S. Maier, R. Unterhinninghofen, and R. Dillmann, ”Web-
based interactive volume rendering”, Stud. Health. Technol. Inform.,
2011, vol. 163, pp. 635–637

2371

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

