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Abstract— Online estimation of cerebral autoregulation (CA)
may be advantageous in neurosurgical and neurointensive care
units. Data from transcranial Doppler, and continuous arterial
blood pressure are readily available at high temporal resolution
and may be used to assess CA. There are currently no methods
for nonlinear, noninvasive, online assessment of CA. We frame
the assessment of CA as a parameter estimation problem, in
which we estimate the parameters of a nonlinear mathematical
model of CA using the ensemble Kalman filter (EnKF).

In this simulation study, we use the EnKF to estimate
the parameters of a model of cerebral hemodynamics which
predicts intracranial pressure and cerebral blood flow velocity,
generated from real patient arterial blood pressure measure-
ments. We examine the flexibility and appropriateness of the
EnKF for CA assessment.

I. INTRODUCTION

Cerebral autoregulation (CA) is a compensatory mech-
anism which adjusts cerebral arterial diameters to accom-
modate cerebral blood flow (CBF) demands of brain tissue
in spite of fluctuations in arterial blood pressure (ABP).
Dynamic cerebral autoregulation (dCA) refers to the transient
response of cerebral blood vessels to rapid changes in ABP
[1]. Alternatively, static cerebral autoregulation (sCA) refers
to the quasi steady-state values of CBF for sustained ABP.

Disrupted dCA function is associated with poor outcomes
in stroke [2], [3] and traumatic brain injury (TBI) [4],
[5]. Therefore, continuous dCA monitoring is a potentially
important tool to guide anesthesiologists, and neurosurgical
intensive care units treating these conditions. While a variety
of measurement techniques have been developed to assess
dCA, continuous, noninvasive monitoring of cerebrovascular
function remains a relatively unexplored field.

Some of the difficulty with the development of continuous
dCA monitoring technologies is the lack a gold standard
metric of dCA function[15]. Many metrics utilize invasive
measurements, require the participation of the patient (such
as vasalva maneuver), or require restrictive apparatuses (such
as for lower body negative pressure). Fortunately, assessment
of dCA function can be achieved by analysis of spontaneous
fluctuations in noninvasive measurements of ABP and BFV
[7], [8], [13], [16].
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Czosnyka used a moving-window method analyzing the
correlation between ABP and intracranial pressure (ICP)
signals, termed PRx, over a 20 second period [5]. However,
the method appears to track vasomotor reserve, where PRx=1
when vasomotor reserve is exhausted, not at failure of dCA
function per se, and therefore cannot give an impression
of autoregulatory function until autoregulatory vasodilation
is already exhausted. Furthermore, the PRx utilizes ICP
measurements, which necessitates the invasive insertion of an
pressure transducer within the cranium, placing the patient at
risk for infection. While the PRx may be a useful clinical tool
to assess the state of cerebral hemodynamics, a measure of
autoregulatory function prior to exhaustion of autoregulatory
reserve, and prior to the necessity of ICP measurement, may
be an important early warning sign to guide the clinician in
appropriate interventions. A similar metric, the Mx index,
a measure of sCA, is strongly correlated with dCA and
measurements of sCA and dCA may be redundant [9].

Kashif et al. [12] utilized a perturbation solution of a
mathematical model of ICP dynamics [11] to obtain con-
tinuous, noninvasive estimates of cerebrovascular resistance,
compliance, or intracranial pressure. It should be pointed out
that the concept of cerebrovascular compliance is not one that
is well developed and should be interpreted with caution.
While the method seems to provide reasonable estimates of
intracranial pressure, it does little to determine autoregulatory
function.

The autoregulatory index (ARI) [10] is a widely used
method used for assessment of dCA. Panerai et al. have
used this method to obtain continuous measurements of
dCA function [14], however, this method assumes a linear
relationship between ABP and BFV. The nature of ARI as
an inverse problem, makes the interpretation of ARI difficult.
Parameter estimates, particularly, those that are estimated
suboptimally, retain uncertainties associated with residual
errors in the model fit. These errors are further propagated
into the estimation of the final ARI metric. Thus, in order
to gain a realistic idea of how ARI varies between popu-
lations, uncertainty within subjects, between measurements,
and within populations must be accounted for. In previous
studies, only between measurement, and between subject,
variability has been accounted for [6]. An honest assessment
of uncertainty in the ARI due to propagated errors is lacking.

Our approach to the online estimation problem differs
from others in thee fundamental ways; 1) we propose us-
ing a nonlinear mathematical model of cerebral autoregu-
lation which has parameters that are more physiologically
interpretable; 2) we do not summarize the values of the
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parameters into a single metric; 3) parameter estimation
can be achieved simultaneously with estimates of parameter
uncertainty.

The purpose of this study was to determine the feasibility
of online CA estimation by parameter estimation using the
ensemble Kalman filter (EnKF) and simulated patient data.

II. METHODS

A. Data

Measurement of ABP were recored continuously from
the finger using the Finapres device (Finapres, Ohmeda
Monitoring Systems, Englewood CO). Transcranial Doppler
ultrasound (TCD) was used to record BFV from the temporal
window. A transient drop in ABP, and a corresponding drop
in BFV was induced by a postural transition from sitting
to standing (sit-to-stand). Measurements were recorded at
a sampling rate of 1000Hz. A 80 second segment of the
recordings, which includes the drop and return of ABP and
BFV were preprocessed by filtering with a FIR filter at .5
Hz and down-sampled to 10Hz.

B. Model of cerebral autoregulation

A complete description of the model used in this study,
can be found in [11]. Specific modifications that we made
to the model are described below.

The model [11] was modified in order to better correspond
with the experimental conditions used in this study. For this
study, the time scale of the ABP-BFV dynamics was much
shorter than the dynamics of cerebrospinal fluid circulation.
We therefore discarded terms corresponding to the flow of
cerebrospinal fluid. Particular to our BFV data, we have
observed from a number of subjects that, following a sit-
to-stand, BFV does not always return to pre-standing levels.
We did not find this to be due to a corresponding decreased
ABP. Therefore, assuming volumetric blood flow q to be
proportional to BFV, we modeled baseline blood flow, qn as

qn(t) =
qn,init − qn,fin

1 + exp(t− δq)
+ qn,fin

where qn,init and qn,fin are the initial and final estimated
blood flows, respectively, and δq corresponds to the time of
the transition of qn.

C. The ensemble Kalman filter

The EnKF is a Monte Carlo method for online state
estimation [17]. The EnKF is a stochastic filter which has
been shown to provide robust results compared to other
ensemble filters [18]. The generalized state-space description
of the model is given by

xj = f(xj−1, θ) + εp,j

x(t0) = x0 + ε0 (1)
yj = h(xj , θ) + εm,j

where xj is the model state at time tj , θ are the model
parameters, x0 is the model initial condition, yj is the data
generated by the nonlinear observation function h(·), and εpj

,
εm are process and measurement noise, respectively, at time

tj , and ε0 is initial measurement uncertainty. For the analysis
shown here, we assume evenly-spaced measurements in time.
Here, we are primarily concerned with the estimation of the
model parameters, θ. However, if we let the augmented state
vector be x = (xT

j , y
T
j , θ

T
j )T , then we may estimate x at

each time step, and model the parameters with the dynamics
θj = θj−1.

D. Simulation experiments

Initial parameter values θ0 were determined from a com-
bination of values taken from [11] and functional relations
between parameters and mean ABP and BFV values given
there. Improved parameters were obtained by least squares
fitting to real BFV data. In order to eliminate problems due
to “modeling errors”, these improved parameters were taken
to be the true parameter values θ∗ and were used to simulate
BFV data y∗ . Gaussian noise, εm ∼ N (0, σ2

m), was added
to y∗ in order to simulate measurement errors with σ2

m = 2.
The EnKF was used to estimate θ∗ using this simulated data.

III. RESULTS

A. Filter Performance

Mean squared error of BFV was found to be 3.2897, which
is slightly larger than σ2

m = 2, indicating that the filter
performed worse than measurements alone for estimation of
BFV. However, estimation of BFV was not the goal of this
analysis and we find the estimation error is within reasonable
limits. The filter estimate of BFV, data and the true solution
y∗ are plotted in Fig. 1.
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Fig. 1. Simulated blood flow velocity (BFV) (blue), BFV data (red
dots), and BFV estimate (green) generated from real arterial blood pressure
recording. Dashed lines represent 95% confidence interval of BFV estimate.

B. Parameter estimation performance

Initial parameter values, true parameter values, and 95%
confidence interval for parameter estimates are given in Table
I. Table I shows that although θ0 were far from the true
parameter values θ∗, θ∗ where within the 95% confidence
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TABLE I
NUMERICAL RESULTS OF PARAMETER ESTIMATION FOR SIMULATED

DATA. A DESCRIPTION OF THE PARAMETERS LISTED IS GIVEN IN [11].
TRUE θ∗ , INITIAL θ0 , AND ESTIMATED θ̂ PARAMETERS ARE GIVEN IN

log10 SCALE.

θ∗ θ0 θ̂ 95% CI
kE -1.9212 -3.5650 -1.89155 -2.0766 -1.7065
τ 0.9588 2.6021 1.78045 1.2234 1.5792
G 1.1393 2.0000 0.98465 0.8190 1.1503
kR 4.6299 9.2658 4.6714 4.5116 4.8312

interval for three of the four estimated parameters. These
results clearly indicate an accurate estimation of the model
parameters by the EnKF following a sit-to-stand.

IV. CONCLUSIONS AND FUTURE WORKS

The results of this study suggest that parameter estimation
for a model of CA can be achieved by the EnKF using
measurements of ABP and BFV. More work must be done
in order to determine the optimal set of parameters to be
estimated, as well as the optimal filtering strategy.

Although parameter estimates were reasonable for this
study, in general, parameter estimates obtained through the
EnKF tend to be biased toward initial values. The degree of
bias is reciprocally related to the magnitude of the process
noise covariance. Thus, a larger process noise may have
resulted in a more accurate estimate of τ , present in Table I,
but only at the expense of estimation precision. It is possible
that this problem may be mitigated by adjusting the process
noise adaptively [19], [20].

While the filter methods used here have shown to be ap-
propriate, better results for patient-specific dCA assessment
should account for variation in CO2. Both linear [21] and
nonlinear [22] systems identification methods have shown
that CO2 significantly improves dynamic BFV prediction
compared to prediction by ABP alone. Therefore, future
iterations of this method should utilize a mathematical model
of intracranial dynamics that includes the contribution of
CO2 to dCA.

For real BFV data, the sampling rate is far higher than
the time scale of the dominant dynamics described by the
model. Therefore, the assumption of white noise may be
erroneous. This possibility could result in under-estimating
the parameter uncertainty [23]. Future iterations of this
method will account for colored noise by augmenting the
state vector with the time-correlated error terms, as described
by Jazwinski [19].

V. ACKNOWLEDGMENTS

REFERENCES

[1] R. Aaslid, K.F. Lindegaard, W. Sorteberg and H. Norne. Cerebral
autoregulation dynamics in humans. Stroke, 20, 1989, 45-51.

[2] M. Reinhard, C. Wihler, M. Roth, et al. Cerebral autoregulation dy-
namics in acute ischemic stroke after rtPA thrombolysis. Cerebrovasc
Dis.,26, 2008, 147-155.

[3] F.J. Alvarez, T. Segura, M. Castellanos, et al. Cerebral hemodynamic
reserve and early neurologic deterioration in acute ischemic stroke. J
Cereb Blood Flow Metab., 24, 200,1267-71.

[4] M. Czosnyka, P. Smielewski, P. Kirkpatrick, D.K. Menon, J.D.
Pickard, Monitoring of cerebral autoregulation in head-injured pa-
tients. Stroke, 27, 1996, 1829-1834.

[5] M. Czosnyka, P. Smielewski, P. Kirkpatrick, R.J. Laing, D. Menon,
J.D. Pickard, Continuous assessment of the cerebral vasomotor reac-
tivity in head injury. Neurosurgery 41, 1997, 11-19.

[6] F.G. Brodie, E.R. Atkins, T.G. Robinson, R.B. Panerai. Reliability
of dynamic cerebral autoregulation measurement using spontaneous
fluctuations in blood pressure. Clinical science 116, p.513. 2009.

[7] K. Hu, C.K. Peng, M. Czosnyka, P. Zhao, V. Novak, Nonlinear
assessment of cerebral autoregulation from spontaneous blood pressure
and cerebral blood flow fluctuations. Cardiovascular Engineering 8:
60-71, 2008.

[8] L. Lipsitz, S. Mukai, J. Hamner, M. Gagnon, Babikian. Dynamic
regulation of middle cerebral artery blood flow velocity in aging and
hypertension. Stroke, 31, 2000, 1897-1903.

[9] E.W. Lang, H.M. Mehdorn, N.W.C. Dorsch, M. Czosnyka. Continuous
monitoring of cerebrovascular autoregulation: a validation study. J
Neurol Neurosurg Psychiatry, 72, 2002, 583586.

[10] F.P. Tiecks, A.M. Lam, R. Aaslid, D.W. Newel. Comparison of static
and dynamic aturegulation measurements. Stroke, 26, 1014-1019,
1995.

[11] M. Ursino, C.A. Lodi. A simple mathematical model of the interaction
between intracranial pressure and cerebral hemodynamics. J Appl
Physiol. 82,1997,1256-1269.

[12] F.M., Kashif, T. Heldt, G.C. Verghese. Model-based estimations of
intracranial pressure and cerebrovascular autoregulation. Computers
in Cardiology. 35: 369-372. 2008.

[13] R.B. Panerai, J.M. Rennie, W.R. Kelsall, D.H. Evans. Frequency-
domain analysis of cerebral autoregulation from spontaneous fluctua-
tions in arterial blood pressure. Medical and Biological Engineering
and Computing, 36, 1998, 315-322.

[14] R.B. Panerai, E.L. Sammons, Smith SM, Rathbone WE, Bentley
S, Potter JF, Samani NJ. Continuous estimates of dynamic cerebral
autoregulation: influence of non-invasive arterial blood pressure mea-
surements. Physiol Meas. 29:497-513. 2008.

[15] Panerai, R.B. Cerebral autoregulation: From models to clinical appli-
cations. Cardiovascular Engineering, 8, 2008, 42-59.

[16] M. Reinhard, B. Roth, B. Guschlbauer, A. Harloff, J. Timmer, M.
Czosnyka and A. Hetzel. Dynamic cerebral autoregulation in acute
ischemic stroke assessed from spontaneous blood pressure fluctuations.
Stroke 2005;36;1684-1689;

[17] G. Evensen, Squential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forcast error statis-
tics, J. Geophys. Res., 99, 1994, 143-162.

[18] J. Lei, P. Bickel and C. Snyder, Camparison of ensemble Kalman filters
under non-Gaussianity, Mon. Wea. Rev., 138, 2010, 12931306.

[19] A.H. Jazwinski, Stochasitic Processes and Filtering Theory, Academic
Press, New York; 1970.

[20] E.B Rastetter, M. Williams, K.L. Griffin, B.L. Kwiatkowski, G.
Tomasky, M.J. Potosnak, P.C. Stoy, G.R. Shaver, M. Stieglitz, J.E.
Hobbie, and G.W. Kling. Processing arctic eddy-flux data using a
simple carbon-exchane model embedded in the ensemble Kalman
filter. Ecological Applications, 20(5), 2010, 1285-1301.

2412



[21] T. Peng, A.B. Rowley, P.N. Ainslie, M.J. Poulin and S.J. Payne,
Multivariate system identification for cerebral autoregulation, Annals
of Biomedical Engineering, 36, 2007, 308-320.

[22] G.D. Mitsis, M.J. Poulin, P.A. Robbins, V.Z. Marmarelis, VZ. Non-
linear modeling of the dynamic effects of arterial pressure and CO2

variations on cerebral blood flow in healthy humans. IEEE Transac-
tions on Biomedical Enineering, 51, 2004, 1932-1943.

[23] A.R. Gallant and J.J. Goebel, Nonlinear regression with autocorrelated
errors. J. Am. Stat. Assoc., 71, 1976, 961-

2413


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

