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Abstract— Relay neurons are widely found in our nervous
system, including the Thalamus, spinal cord and lateral genic-
ulate body. They receive a modulating input (background
activity) and a reference input. The modulating input modulates
relay of the reference input. This modulation is critical for
correct functioning of relay neurons, but is poorly understood.
In this paper, we use a biophysical-based model and systems
theoretic tools to calculate how well a single relay neuron relays
a reference input signal as a function of the neuron’s electro
physiological properties (i.e. model parameters), the modulating
signal, and the reference signal parameters. Our analysis is
more rigorous than previous related works and is generalizable
to all relay cells in the body. Our analytical expression matches
relay performance obtained in simulation and suggest that
increasing the frequency of a sinusoidal modulating input or
decreasing its DC offset increases the relay cell reliability.

I. INTRODUCTION

Relay neurons in the thalamus are believed to relay
information from cortical inputs back to the cortex [1],
[2], [3], [4]. This relay is modulated by input from other
afferent fibres [5], [6]. The function of this type of neuron
is to generate an output that relays the reference input
conditioned upon modulating input [5]. Relay neurons are
also found in areas like olfactory bulb, lateral geniculate body
and spinal cord [7], [8], [9]. To enhance our understanding
about the relay neurons it is important to characterize the
electrophysiological dynamics of a single cell as a function
of the cell type and its inputs. Typically, these dynamics are
modeled as a set of parametric nonlinear ordinary differential
equations, which are not always easy to analyze.

An attempt to study relay neurons is made in [10], [6].
Specifically in [10] they studied effects of the Basal Ganglia
(BG) inhibition on the thalamic relay reliability. However,
phase-plane analysis is used to argue how reliability changes
for only a few types of inputs. Other attempts used simula-
tions to understand how specific inputs impact a cell’s output
for a given cell type [11].

Our analysis considers all possible periodic synaptic inputs
and is more rigorous. In addition we allow input from cortex
to be random, i.e spikes occur at random times at a given
rate. Specifically, we use systems theoretic tools to study how
well a single neuron’s output relays a reference input signal
as a function of the neuron type, the modulating input signal,
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Fig. 1. Block diagram of a Relay Neuron - It receives two inputs 1.
reference input r(t) and 2. modulating input u(t), and generates one output
V (t).

and the reference signal parameters. The methods used here
are generally applicable to understanding cell behavior under
various conditions and will enable more rigorous analysis of
the electro-physiological changes that occur in diseases.

Finally, we give an analytical expression for relay relia-
bility as a function of the input and the neuron parameters.
Our expression suggests that on increasing the frequency
of modulating input or decreasing its DC offset the relay
reliability of a relay cell increases.

II. METHODS

In this section first we will describe a biophysical model
of a relay neuron, and then will use phase plane analysis
to define important concepts that will help us to compute
reliability.

A. A Relay Neuron Model

A relay neuron receives two kinds of inputs: a reference
input, r(t) and a modulating input u(t), and generates one
output, V (t), as shown in Figure 1. This relay neuron model
structure has been used many times to model thalamic
neurons to study the effect of deep brain stimulation (DBS)
in Parkinson’s disease (PD) [2], [10], [11], [12], [13].

We would like to understand exactly how the modulating
input changes relay reliability of a neuron. To do so, we
use a biophysical model to describe the electro-physiological
dynamics of a relay neuron. In particular, we choose a
simplified model that is driven only by calcium ion and leak
currents that is described by the following set of differential
equations:

dV
dt

=
−1
Cm

(IT + IL− Iext +u(t)(V −Vsyn)− r(t)) (1a)

dh
dt

= φ
(h∞(V )−h)
(τh(V ))

(1b)

IT = gT m3
∞(V )h(V −VCa); IL = gL(V −VL) (1c)
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Fig. 2. A. Phase-Plane diagram B. Steady State Orbit and The Orbit
Tube of a Relay Neuron - A. The v-nullcline denotes the collection of
points where Ẋ1 = 0 and the h-nullcline is where Ẋ2 = 0. These two lines
divide the phase-plane into four different regions marked by balck arrows.
In each region, the black arrows indicate the direction in which the state
vector evolves. B. Shows the steady state orbit and the orbit tube of a relay
neuron

The details of this model can be found in [14] wherein
this model is used to model neurons in the inferior olive
for the purpose of studying sub-threshold oscillations. We
choose this model because it is simple and still contains
low threshold calcium currents which are shown to govern
input selectivity of relay neurons [12]. In our model we
choose Iext = −1µA/cm2,gT = 0.6 and gL = 0.2. All other
parameters are same as in [14].

Our model also receives two inputs which are as follows:
Reference Input(r): This input represents the spiking

activity from other neurons (e.g. cortical neurons), which
the neuron must relay, and belongs to the following class of
functions:

S = {r(t) ∈ R | r(t) = I0

n

∑
i=1

δ (t− ti)}. (2)

Here, I0, ti, t ∈ R+ and i,n ∈ N. δ (t) is a Dirac delta
function [15]. The t ′i s are generated randomly such that
ti+1 = ti +T0 + τ , where T0 ∈ R is a constant that represents
the refractory period of reference input, and τ ∈ R+ is
exponentially distributed with probability density function:

fτ(τ) =

{
λe−λτ for τ ≥ 0
0 for τ < 0

, (3)

where λ ∈ R+. Now we define the average interspike in-
terval as T = E(ti+1− ti) = T0 + 1/λ . Note that as τ ′s are
characterized completely by λ and T0.

Modulating Input(u): This input represents background
activity received by a relay neuron. It modulates the dynam-
ics of the neuron and governs relay performance. It comes
into the biophysical model (1) as a synaptic input and belongs
to the following class of sinusoidal functions:

U = {u(t) ∈ R | u(t) = c1 + c2sin(ωt)}. (4)

Here c1,c2,ω , and t ∈ R+ and c1 ≥ c2. Since u(t) repre-
sents the amount of synaptic transmitter released by a neuron,

we have the constraint c1≥ c2 to ensure that u(t)∈R+. Also,
c1 and c2 are appropriately small so that the modulating input
does not make the relay neuron spike without a reference
input. This property of the modulating input will be useful
when we linearize (1) for analysis. u(t) is modeled as a
deterministic signal because it represents ensemble synaptic
activity from a group of neurons.

Finally, by defining a state vector X = [(V −Vsyn),h]T , we
can write an equivalent but compact state space representa-
tion of (1) as:

Ẋ = f (X)+

(
−u(t) 0

0 0

)
X +

(
r(t)

0

)
, (5)

where, f (X) can be found by comparing (1) and (5).

B. Response to u(t) = c1 + c2sin(ωt) and r(t) = 0

A neuron characterized by (5) approaches a closed tra-
jectory as t → ∞ if r(t) = 0 and u(t) = c1 + c2sin(ωt). We
define this closed trajectory as the steady state orbit of a
relay neuron. If the system does not converge to a closed
trajectory or a point, then it has no steady state orbit.

Now, we define X∞ as the collection of all points in
the steady state orbit. X∞ is not achievable in finite time,
therefore, we relax the definition to the collection of all
points inside a tube of ε thickness around the steady state
orbit as the set Xr, i.e.

Xr = {X ∈ R2| ‖X−X∞‖ ≤ ε for a X∞ ∈ X∞}. (6)

If state X ∈Xr, then we say that it is in the orbit tube. Note
that for a given ε > 0 ∃ t0 ∈R+ such that ∀t > t0, X(t) ∈ Xr.
We set ε = 10−3 in our study. Figure 2 B plots steady state
orbit and the orbit tube for a neuron (5).

C. Response to pulses in r(t) and u(t) = c1

When a reference pulse arrives, there are 2 possible
responses of system in (5). The neuron either successfully
spikes or unsuccessfully spikes. In Figure 3 A, we have
plotted these two types of pulse responses.

It is straightforward to see how these two responses occur.
The reference pulse causes the state vector to “ jump” to
X(ti) = X(t−i ) + [I0,0]T . This is easy to show by direct
integration of (5), on the time interval lim∆t→0[ti − ∆t, ti].
If the dynamics of second component of state, X2, are slow
and X(ti) falls into region 1 (see Figure 2 A ) the neuron
will generate a successful spike, otherwise it will return
back to the equilibrium point generating unsuccessful spike
(note the directions of arrows in Figure 2 A). We define,
the threshold current, Ith, such that X0 + [Ith,0]T , falls in
region 1 and the system generates a successful spike. We
define quantity X01 + Ith as threshold voltage Vth. Note that
X0 is the equilibrium point of the system.

The system that we are interested in studying, i.e. (5),
receives a time varying input u(t) with c2 6= 0, making the
threshold voltage Vth time dependent, but for simplicity we
assumes that Vth is a constant in time. We later show that this
assumption does not significantly impact our expression for
relay reliability of the neuron, and our expression matches
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Fig. 3. Successful Spike, Unsuccessful Spike and Time to Resting State
- A. The time profile of a successful spike (1) and unsuccessful spikes (2,3).
Tr is the time between spike onset and point where system state enter orbit
tube at point Xr . B. Successful spike and unsuccessful spike in the phase-
plane. C. Xs and Xus. Note that unsuccessful spike(2) occurs as a result of
the reference pulse occurring when X /∈ Xr .

well with reliability calculated through simulation of (1).
Finally, we define time taken by system state to return to
Xr after shooting a successful spike as time to orbit tube,
Tr.

D. Full response to both r(t) and u(t)

When r(t) and u(t) are both applied to (5), whether a
pulse in r(t) induces a successful spike or unsuccessful
spike depends on the system state when the pulse occurs.
Therefore, we define set Xs ⊆ Xr as the collection of all
points that result in successful spikes after a pulse in r(t),
and Xus ⊆ Xr as the collection of points that results in
unsuccessful spikes after a pulse in r(t). These sets are
illustrated in Figure 3 C. Note that if the reference pulse
does not occur for a Tr time interval i.e, the system state
will move into Xr.

From Figure 3 C, one can see that Xus is the region in
Xr to the left of vertical line at Vth− I0 and Xs is the region
in Xr to the right of vertical line at Vth− I0. This is because
for X1 < Vth− I0, a delta pulse of height I0 will not make
the system state jump to region 1 and hence will result in an
unsuccessful spike. Similarly, if X1 ≥ Vth− I0 a delta pulse
will result in a successful spike.

E. Relay Reliability

We define relay reliability as:

R , Pr(Successful spike due to a reference pulse ). (7)

In this manuscript we will study reliability under the con-
dition that Tr < T0. This condition will ensure that state
X(t) ∈ Xr whenever a pulse in r(t) occurs. Therefore we
could rewrite definition of reliability as:

R = Pr (X(ti) ∈ Xs|X(ti) ∈ Xr) (8)

R can also be approximated as the ratio of the time spent
by the steady state solution of (5) (r(t) = 0), X(t) in Xs
to the time it takes to complete one orbit cycle in Xr. R
converge to this approximation in case T >> 2π/ω , with
T being average inter-pulse interval in r(t) and ω being the
frequency of u(t). The time taken to complete one orbit cycle
in Xr is 2π/ω . To calculate time spent in Xs, we must find
the solution to (5) when the state is in orbit tube Xr. This
solution is given by steady state solution of (5) with r(t) = 0.

To find it, we linearize (5) about the nominal solution
X0(t) = X0 given the nominal input u0(t) = c1. Now, if the
input is perturbed such that u(t) = u0(t)+ δu(t) and initial
condition is perturbed such that X(0) = X0(0)+ δx(0), the
state trajectory will also be perturbed to X(t) =X0(t)+δx(t).
Upon substituting these values and performing a first order
Taylor series expansion of (5) about the nominal solution
and nominal input we get:

δ̇x'
[

δ f (X)

δX
|X0 +

(
−c1 0

0 0

)]
δx+

[(
−1 0
0 0

)
X0

]
δu,

(9)
which can be equivalently written as:

δ̇x = Aδx+Bδu(t), (10)

Note that here δu(t) = c2sin(ωt).
The solution of (10), with δx(0) = 0, in the Laplace

domain [16] is:

δx = (sI−A)−1Bδu(s). (11)

Substituting δu and calculating (sI−A)−1B, we get:

δx =−
(

H1(s)
H2(s)

)
c2X01

ω

s2 +ω2 (12)

For our model we found H1(s) = s+0.009616
s2+0.1791s+0.001656 and

H2(s) = −5.219e−5
s2+0.1791s+0.001656 . From (12), one can compute

the steady state solution of (10) by taking inverse Laplace
transform of (12) and taking the limit t → ∞. This gives
steady state solution as:

δx(t) =−
(

ℑ(H1( jω)× c2X01e jωt)
ℑ(H2( jω)× c2X01e jωt)

)
. (13)

Here, ℑ(a) denotes the imaginary part of complex number a.
Note that δu(t) = c2sin(ωt) for u(t) ∈U. (10) approximates
(5) in steady state when c2 is small, which is always the
case by definition of U. Also note that, we will get the same
steady state even if δx(0) 6= 0. Using (13), we can write the
steady state solution, of (5) as:

X(t) = X0 +δx(t) (14)

Now the time spent in Xus in one cycle is the difference
between the two values of time, t, when X1(t) = X01 +
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δx1(t) = Vth − I0. Substituting the value δx1(t) from (13)
and observing that Vth = X01 + Ith, we get:

(I0− Ith) = ℑ(H1( jω)× c2X01e jωt) (15a)
= c2|H1( jω)|X01sin(ωt +ψ) (15b)

Here ψ = ∠H1( jω). The roots of this equation are:

µ1 =
1
ω

(
sin−1

(
(I0− Ith)

c2|H1( jω)|X01

)
−ψ

)
, (16a)

µ2 =
1
ω

(
π− sin−1

(
(I0− Ith)

c2|H1( jω)|X01

)
−ψ

)
. (16b)

Finally the time spent in Xus is µ2−µ1. Therefore time spent
in Xs is:

2π

ω
− (µ2−µ1) =

1
ω

(
π +2sin−1

(
I0− Ith

c2|H1( jω)|X01

))
.

(17)
Now we calculate, R, as ratio of 2π

ω
− (µ2−µ1) and 2π/ω .

That is,

R =
π +2sin−1

(
I0−Ith

c2|H1( jω)|X01

)
2π

. (18)

III. RESULTS & DISCUSSION

Equation (18) gives dependence of reliability of a relay
neuron on different input and model parameters. Most im-
portant among which is dependence on the frequency of
modulating input. In Figure 4 we plot the R as a function
of frequency ω

2π
, for fixed c1 = c2 = 0.0025, I0 = 6.71,Tr =

520ms,T0 = 1000,T = 1500. From the analytical curve we
see that reliability is almost constant for low ω and then
increases steeply until it again becomes constant. Figure 4
also plots the simulation results from (5). While simulating,
we set T0 > Tr, to ensure that every pulse in r(t) occurs when
the neuron state is in Xr. This allows us to compute R as
given by (7), through simulation. We see that the analytic
expression for R fits well to the simulated curve, indicating
that all our approximations and assumptions are reasonable.

Our analysis also gives insights on how modulating input
frequency effects relay reliability. One can see decrease in
gain H1( jω) is responsible for increase in reliability. This
is because a relay neuron acts as a low pass filter and
filters out high frequency components of the modulating
input. Therefore a high frequency modulating input effect
becomes similar to zero modulating input effect, as far as
relay reliability is concerned. Finally, (4) may find wide
use in studying neuronal circuits where relay neurons are
involved, e.g. BG-Thalamus circuit in PD, reflex circuitry
in spinal cord. Furthermore, as thalamic relay reliability is
hypothesized to be related to PD [5], [10], (4) may also be
useful in answering questions such as why lesion and DBS
has similar therapeutic effects in PD, why low frequency
DBS do not work etc.
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