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Abstract— We describe the reconstruction of a gene regu-
latory network involved with the Toll-like Receptor signaling
pathways. By applying our recent identification algorithm to
a time series gene expression dataset, we identify regulatory
interactions between genes and construct discrete-time piece-
wise affine regulatory functions. Our validation shows that our
model predicts the expression levels of the genes involved in
the network with good accuracy.

I. INTRODUCTION

The integration of multiple networks is an effective way of
improving the accuracy of computational models. Recently,
we have described the integration of the signaling network
of the Toll-Like Receptor (TLR) signaling pathways [10],
the metabolic network of mouse [13], and a gene regulatory
network we created and its application to infection responses
(Fig. 1) [12]. We describe in this paper the reconstruction of
this gene network.

One of the most important challenges in systems biology
is the identification of gene regulatory networks. Previous
works in the field have largely been based on the analysis of
gene expression data [1], [4]. This problem has been studied
with control systems approaches. An identification method
using the structure of piecewise affine (PWA) dynamical sys-
tems has been reported in [3], [11]. A model for identification
of sparse networks using Hill functions has been developed in
[2]. One of the authors has identified sparse networks based
on genetic perturbation data, assuming that the dynamics can
be locally described as a linear system [8], [14].

Recently, we have presented a new identification method
based on monotone functions decomposition [7]. This ap-
proach assumes that each regulatory function is continuous,
non-negative, and monotone. Monotonicity is a natural as-
sumption since the notions of gene activation and repression
are not well defined otherwise. The reconstruction algorithm
detects regulatory relations between genes, and constructs a
mathematical model for the network in the form of a discrete-
time PWA system.

We apply our reconstruction procedure to the gene ex-
pression dataset from [1]. This dataset contains time series
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Fig. 1. Schematic representation of the integrated model from [12].

expression values for bone-marrow dendritic cells exposed
to five different stimuli. In this paper we use the expression
values obtained after exposure to lipopolysaccharide. Gene
expression levels were measured twice at every time point of
the experiment. We use the first set to identify a gene regu-
latory network and validate the identification procedure with
the second set. Our validation shows that the reconstructed
network predicts gene expression level with great accuracy.

The remainder of this paper is organized as follows. In
Sec. II we provide a short description of our reconstruction
algorithm. Then, in Sec. III, we illustrate the reconstruction
of the gene regulatory network. In Sec. IV we provide a
validation of the suggested network.

II. RECONSTRUCTION ALGORITHM

In this section we briefly review our gene network recon-
struction algorithm from [7]. The algorithm detects regula-
tory interactions between genes and constructs discrete-time
PWA regulatory functions.

We assume that we are given experimental data for genes
in a set G as time-series expression data at N+1 time points
in the form xg,n where g ∈ G and 0 ≤ n ≤ N . We compute
the time-difference expression data as qg,n , xg,n+1 − xg,n,
g ∈ G, 0 ≤ n ≤ N − 1. The goal of the algorithm is
to construct a mathematical model for the gene network
dynamics that is compatible with the gene expression data.
We focus on a particular class of discrete time systems of
the following form

xg(n+ 1) = xg(n) +
∑
k∈GR

g

fg,k(xk(n))− λgxg(n), (1)

where xg(n) denotes the concentration of mRNA expressed
from gene g ∈ G at time step n, λg ≥ 0 is its decay rate, GR

g
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is the set of regulators for gene g, and fg,k(·) is a function
describing the regulation of gene g by gene k.

It is assumed that each function fg,k(·), g ∈ G and k ∈ GR
g ,

is continuous, non-negative, and monotone. Monotonicity is
a natural assumption, since the notions of gene activation
and repression are not well defined otherwise.

The first step in the identification of a model in the form
(1) for our gene network is the construction of the regulatory
sets GR

g , for all g ∈ G. We start by sorting xg,· in ascending
order. We denote the sorted experimental data by x̂g,·, g ∈
G. The sorting process corresponds to the construction of a
bijection σg : {0, . . . , N} → {0, . . . , N} such that xg,n =
x̂g,σg(n) and x̂g,n ≤ x̂g,n+1. Let ∆g

k,n , fg,k(x̂k,n+1) −
fg,k(x̂k,n) for 0 ≤ n ≤ N − 2 and k ∈ GR

g .
In order to verify that GR

g is a set of regulators for gene
g, we use the following theorem.

Theorem 1 (Theorem 2 of [7]): GR
g is a set of activators

for gene g ∈ G such that the available experimental data
is compatible with the model from (1) if and only if the
following polyhedral set

qg,n = −λgxg,n +
∑
k∈GR

g

fg,k(x̂k,0) +

σg(n)−1∑
l=0

∆g
k,l


for n ∈ {0, · · · , N − 1},
∆g

k,l ≥ 0 for k ∈ GR
g and l ∈ {0, · · · , N − 2},

λg ≥ 0,

fg,k(x̂k,0) ≥ 0 for k ∈ GR
g

fg,k(x̂k,0) +
N−2∑
l=0

∆g
k,l ≥ 0 for k ∈ GR

g ,

is non-empty, where fg,k(x̂k,0), ∆g
k,l, and λg for g ∈ G,

k ∈ GR
g , and l ∈ {0, . . . , N − 2} are the variables. xg,n

and x̂g,n for g ∈ G and n ∈ {0, . . . , N} correspond to the
experimental gene expression data.

The above theorem is based on the fact that a gene
k activating g corresponds to an increasing function fg,k.
To accommodate other combinations of activator/repressor
genes in the set GR

g , one can simply change the sign
constraints for ∆g

k,l and get the corresponding equivalent
forms of Theorem 1.

Computationally, checking the non-emptiness of the poly-
hedral set in Theorem 1 involves solving a Linear Pro-
gramming problem (LP) with a trivial objective function
(i.e. 0) and the polyhedral set as constraints. From an
implementation viewpoint, it is more efficient to reformulate
the LP as a Linear Quadratic (LQ) programming problem
based on the definition of slack variables ϵ := (ϵf , ϵ∆) (see
[7] for a detailed LQ formulation). MATLAB is used with
the CVX [6] package to solve the LQ programming problem.
A small ϵ implies that the genes in GR

g correctly explain the
expression data for gene g.

Finally, it is important to note that, as a by-product of
Theorem 1, we get numerical values for the decay rates
λg and the regulation functions fg,k at the time points
corresponding to the experimental data. Given that the gene

expression data is over the same time points, the latter can
be easily converted to a finite number of values for each
function fg,k(xk). By linear interpolation of these values we
construct a piecewise linear model of the form given in (1).

III. APPLICATION OF THE ALGORITHM

In this section we apply the algorithm from Section II to
the experimental data from [1] to construct a mathematical
model for a sparse gene network that interacts with the TLR
signaling pathways. Gene expression levels were measured
twice 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 hours after exposure
to the stimulus. We denote as T1 and T2 the first and second
measurements, respectively. We employ T1 for the purpose
of network identification in this section and T2 to validate
the performance of the reconstructed network in Section IV.

A. Selection of gene pool

The first step for the construction of the gene network
is the selection of the set of genes G. This is, in fact, an
iterative process. By using the KEGG database [9] and the
TLR network, we selected a set of 17 genes that are directly
regulated by transcription factors from these signaling path-
ways. This set of genes form the “input layer” of our gene
network. Similarly, we identified a set of 49 “output layer”
genes that code for proteins involved in the TLR pathways.

The identification procedure require genes whose expres-
sion values vary in time. To this end we employ the first
measurement of the expression data (T1) and discretize it
following the process detailed in [5]. We compute for each
of the 66 genes previously selected their average expression
level over the time series. Then, we check whether each
data point lies above or below the average expression level
±0.5 in base 2 logarithm. Thus, each point is labeled as
highly-expressed, lowly-expressed, or undetermined if the
expression is above, below, or within these thresholds, re-
spectively. We consider that genes with only undetermined
values are not suitable for the identification procedure, since
their expression levels have very little variation.

Fig. 2 shows two examples of this discretization procedure.
Gene expression data for BIRC2 and TNF are plotted with
star-marks. The solid, dotted, and dashed lines correspond
to the average, upper threshold, and lower threshold levels,
respectively, based on the discretization previously described.
All the expression values of BIRC2 lie between the dotted
and dashed line, hence rendering that gene unusable. Several
expression values of TNF are located above the dotted line
or below the dashed line, indicating that this gene is suitable
for further analysis.

This procedure reduces the input layer to 8 genes and the
output layer to 31 genes. We denote as GI and GO these
reduced input and output layers, respectively. Our main goal
for the gene network reconstruction is to connect each gene
from the input layer to at least one gene from the output layer
through regulatory interactions, possibly using some other
intermediate genes. If each gene in the input-layer regulates
at least one gene in the output-layer the procedure of this
section stops. Otherwise, intermediate genes are added and
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Fig. 2. Examples using the discretization of [5] for the data from [1]. The
data of the genes BIRC2 and TNF is plotted with star-mark in the top and
bottom graphs, respectively. The solid, dotted, and dashed lines correspond
to the average, upper threshold, and lower threshold levels, respectively, for
each cases. We consider gene TNF but not gene BIRC2, due to the extent
of the variation of the time-series expression data.

the identification procedure is reiterated. In this case the
intermediate genes are chosen through searches in KEGG
and biomedical literature.

It is important to note that we only consider regulation of
the output genes by (sets of) input genes. There are two main
motivations for this assumption. First, the feedback from the
output genes to the input genes is already captured implicitly
by the TLR signaling network. Second, our plan is to use a
Bayesian (probabilistic) approach for the gene network in the
near future, and cycles are not allowed in Bayesian networks.

B. Application of the algorithm

We apply our identification method to G := GI ∪ GO to
search connections from the input layer to the output layer
genes. We limit to two genes the set of regulators for each
output gene. This assumption is biologically reasonable and
also reduces the computational load.

We have to solve for each gene g in GO a total of 128
(= 21C8

1 + 22C8
2 ) LQ problems, since any combination of

the 8 genes in GI can regulate g, and since every gene in each
regulatory set can be an activator or a repressor. To determine
the best candidate regulator set, a simple method would be
to select the set that corresponds to the smallest error value.
However, our calculation showed that the smallest errors
were very close to each other (less than 10−4 difference).
To select a set of regulators, we proceeded to count the
number of occurrences of each gene k as a regulator of the
same type for gene g in the union of all sets of regulators
with comparably small error. No regulator set with an error
value higher than 10−2 was considered. We accepted k as
a regulator of g if it was present in more than 45% of the
candidates in this set.

C. Result of the network reconstruction

In the second iteration of the algorithm, we added two
intermediate genes to the set G. However, there was no
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Fig. 3. Reconstructed gene regulatory network. The 8 genes in the upper
region and the 12 genes in the lower region correspond to the genes in the
input-layer and the output-layer, respectively.

improvement in the error values and we stopped the iteration.
Fig. 3 shows the result of the reconstruction of the gene
regulatory network. We can see that each gene from the input
layer is connected to at least one gene from the output layer.
A total of 12 output genes are linked to the input-layer.

In addition to the regulatory interactions showed in Fig. 3,
we obtain discrete-time models for the genes in GO con-
trolled by genes in GI as by-products of solving the LP
formulation. By virtue of the LP formulation in Theorem 1
we can automatically construct the continuous non-negative
monotones functions fg,k(·) for k ∈ GR

g as PWA functions.
This is achieved by linearly connecting the data in the
(x, fg,k(x)) plane. Thus we can obtain discrete-time PWA
models for 12 genes in GO.

Note that the connections in our gene network do not
necessarily imply direct relations in terms of biological reg-
ulations since we only depend on the computational method
described in Section II. A connection in the network shows
a causal relation inferred from gene expression data.

IV. VALIDATION OF THE MODEL

In this section we validate the performance of the model
constructed in Section III. The second expression measure-
ment (T2) is employed throughout this section.

A. Validation based on one-step predictions

For each gene g ∈ GO, we compare the experimental
expression values with predictions made with our model.
The experimental values xg,n and xk,n, k ∈ GR

g from T2
are used in (1) to generate xg(n + 1). The predicted value
is then compared with xg,n+1.

Table I provides the relative error values between ex-
perimental and predicted expressions (|xg(n)− xg,n|/xg,n).
About 70% of all relative errors are below 0.20 and only
7% of them are higher than 0.50. The average relative
error obtained for all predictions reaches 0.26. These results
indicate that our PWA model generally predicts expression
values correctly.
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TABLE I
RELATIVE ERROR VALUES BETWEEN EXPERIMENTAL AND PREDICTED EXPRESSIONS AT EACH TIME STEP. EXPERIMENTAL VALUES AT TIME STEP n

ARE USED IN (1) TO COMPUTE PREDICTIONS AT TIME n+ 1.

Time steps CD80 CD86 CHUK CYBB JUN MYD88 NCF1 NFκB1 PRKCB CD40 MAP2K4 FBXW11
1 (1 h) 0.46 0.12 0.15 0.08 0.29 0.04 0.03 0.01 0.33 6.57 0.35 0.85
2 (2 h) 0.44 0.39 0.23 0.18 0.55 0.17 0.25 0.20 0.43 0.78 0.72 0.52
3 (4 h) 0.21 0.30 0.01 0.19 0.12 0.18 0.29 0.13 0.11 0.13 0.19 0.28
4 (6 h) 0.25 0.10 0.20 0.07 0.02 0.18 0.09 0.09 0.12 0.06 0.04 0.36
5 (8 h) 0.21 0.08 0.09 0.03 0.28 0.10 0.02 0.11 0.06 0.12 0.00 0.41
6 (12 h) 0.31 0.18 0.06 0.21 0.13 0.05 0.30 0.09 0.18 0.04 0.03 0.19
7 (16 h) 0.18 0.01 0.12 0.21 0.03 0.16 0.09 0.05 0.28 0.93 0.15 0.04
8 (24 h) 0.07 0.12 0.13 0.16 0.34 0.02 0.05 0.12 0.01 0.26 0.18 0.05
Average 0.27 0.16 0.12 0.14 0.22 0.11 0.14 0.10 0.19 1.11 0.21 0.34

B. Validation based on time course simulations

We perform simulations with (1) to test the performance
of our model. We consider a simulation time step of 30 min.
For each gene g ∈ GO, we initialize xg(0) with xg,0 (i.e. at
0.5 hour) and similarly all xk(0) with xk,0, k ∈ GR

g . Values
for xg(n+1) are determined with (1) using xg(n) and xk(n).
Values for xk(n) are reinitialized at each time step from the
experimental data. If no experimental value exists – we only
have measurements at 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 hours
after stimulus – we derive a value by linear interpolation.

Fig. 4 shows the simulations obtained for every gene of the
output layer. Simulated and experimental data (from T2) are
plotted with dotted lines and star-marks, respectively. In most
cases, the simulation follows closely the trend given by the
experimental data. The model is able to capture accurately
the dynamic of gene expression.

V. CONCLUSIONS

We described the reconstruction of a gene regulatory
network related to the TLR pathways. We applied our
recent identification algorithm to a gene expression dataset,
and determined regulatory interactions between genes. The
connections in our gene network implies causal relations
conjectured from gene expression data. Predictions made
with our model agree with experimental data.
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