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Abstract— The functional connectivity of the human brain
may be described by modeling interactions among its neural
assemblies as a graph composed of vertices and edges. It has
recently been shown that functional brain networks belong to
a class of scale-free complex networks for which graphs have
helped define an association between function and topology.
These networks have been shown to possess a heterogenous
structure composed of clusters, dense regions of strongly asso-
ciated nodes, which represent multivariate relationships among
nodes. Network clustering algorithms classify the nodes based
on a similarity measure representing the bivariate relationships
and similar to unsupervised learning is performed without a
priori information. In this paper, we propose a method for
partitioning a set of networks representing different subjects
and reveal a community structure common to multiple subjects.
We apply this community identifying algorithm to functional
brain networks during a cognitive control task, in particular
the error-related negativity (ERN), to evaluate how the brain
organizes itself during error-monitoring.

I. INTRODUCTION

Functional connectivity is defined as the temporal correla-
tions between spatially remote neurophysiological events [1]
and describes the neural processes required for cognitive and
motor tasks. Functional connectivity has been quantified by
applying coherence or nonlinear synchronization measures to
various neuroimaging data. In previous work, the bivariate
relationships between neuronal populations have been rep-
resented as graphs composed of vertices and edges. These
graphs were then analyzed using various measures from
graph theory including small-world measures and centrality
measures for hub classification. One remaining issue is to
identify the functional modules in these neural networks
through community detection. A community structure is de-
fined as the natural tendency of a network’s vertices to divide
into modules containing a dense number of intra-connecting
edges within each module and a sparse number of inter-
connecting edges between modules. Community detection
methods can be categorized as divisive, agglomerative, or
optimal where a particular objective function is maximized.
These categories can include methods pertaining to spectral
analysis [2], random walks [3], and min-cut problems [4].

Despite the availability of numerous -clustering ap-
proaches, some fundamental problems still endure. These
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include the uncertainty of the number of clusters in the com-
munity, determining the optimality of a particular commu-
nity structure, and representing community structure across
multiple subjects. The literature often presents community
detection on a single network but rarely on multiple net-
works. Evaluating the community structure across subjects
is important for describing both the common structures and
identifying individual variations. Various studies [5] [6]
have searched for commonality within multiple subjects by
introducing random effect analysis and Bayesian classifiers.
We propose a new method for identifying this common
community structure across multiple subjects by representing
community membership as a probability distribution. The
proposed method is based on the hierarchical application of
the spectral graph clustering based on the Fiedler vector.

We apply our method to a set of graphs representing the
pair-wise synchrony among neural assemblies quantified by a
recently introduced time-varying phase synchrony measure.
This approach is applied to EEG data collected during a
study of the cognitive control in the brain based on error-
related negativity. In particular, we are interested in deter-
mining the neural networks responsible for error processing.
It has been hypothesized that the medial prefrontal cortex
(mPFC) interacts with the lateral prefrontal cortex (IPFC) in
a dynamic loop during conditions of conflict or after an error
[7]. We apply the proposed community detection algorithm
to determine whether such a change in the organization of
the brain occurs after an error response compared to a correct
response.

II. METHODS
A. Time-Varying Measure of Phase Synchrony

Recently [8], we have introduced a new time-varying
measure of phase synchrony based on the complex time-
frequency distribution known as the Rihaczek distribu-
tion [9]. For a signal, x(¢), Rihaczek distribution is expressed
as

Clt,0) = \/%x(z)x*(w)e*ﬂ”' 0
and measures the complex energy of a signal at time ¢ and
frequency .

One of the disadvantages of Rihaczek distribution is the
existence of cross-terms for multicomponent signals. In order
to get rid of these cross-terms, we introduced a reduced
interference version of Rihaczek distribution by applying a
kernel function such as the Choi-Williams (CW) kernel with

2
0(6,7) =exp( _(f:) ) to filter the cross-terms to obtain
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where A(6,7) = [x(u+3)x*(u— %)e/%"du is the ambiguity
function of the signal and exp(jOt/2) is the kernel corre-
sponding to the Rihaczek distribution [9]. The phase differ-
ence between two signals based on this complex distribution
is computed as

3)

D (1, 0) =arg{ Ci(t,0)C;(t,0) }

|C1 (2, 0)]|Ca (1, @)
and a synchrony measure quantifying the intertrial variability

of the phase differences, phase locking value (PLV), is
defined as

PLV(t,®) b, w))‘ “)

where N is the number of trials and @, (t, @) is the time-
varying phase estimate between two electrodes for the kth
trial. If the phase difference varies little across the trials,
PLV is close to 1.

B. Graph Measures

A graph is defined as G = (V,E) where V is the set of
N vertices and E is the set of edges assigned to a node
pair, v; and v;. For weighted graphs, G is represented by the
weighted connectivity matrix W such that w;; is the similarity
between nodes v; and v;. Our proposed method for commu-
nity detection utilizes the Laplacian matrix of a graph which
has been shown to represent a more accurate representation
of the network than the connectivity matrix alone [10]. We
define the Laplacian for a weighted connectivity matrix as

= { TN 1=
A O T Y
The spectral decomposition of the Laplacian matrix has been
shown to carry important information about the community
structure [2], particularly the eigenvector associated with the
second smallest non-zero eigenvalue referred to as the Fiedler
vector, ur. The Fiedler vector is a solution to the minimum
cut problem of a graph such that most inter-edges (links
between clusters) are removed and intra-edges (links within a
cluster) are retained. This method allows a network’s vertices
to be categorized into two clusters, C; and C;, based on the
signs of their corresponding elements within ug such that

Vi € G
l C2
This minimum cut splits the network into only two clusters
but may be repeated iteratively to each successive cluster
to find multiple communities. The divisions may continue

until a preselected number of clusters is attained or until an
optimization criteria such as modularity [11] is satisfied.
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C. Optimal Community Structure

The primary problem with iteratively dividing a network
is determining the optimal number of clusters. The most
commonly used optimization measure, modularity [11],
compares a community structure to the expected community
structure of a random graph such that there exists a high
number of edges within clusters and low number of edges
between clusters. Modularity for weighted graphs is defined
as

Q—*Z[

such that m is the number of edges, s; (indegree) is the sum of
the ith row in W, and o(i, j) = 1 if v; and v; are in the same
cluster and O otherwise. Modularity ranges in [—1,1] with
the highest modularity corresponding to a ‘good’ community
structure. Modularity does not always result in the highest
value for the true community structure [12] and can reveal
a suboptimal structure which may be due to the simplicity
of the random model computed through % in Equation 7.
Therefore, we propose to compare the detected weighted
community structure to numerous randomly weighted com-
munity structures. It is expected that vertex pairs connected
with large weights are more likely to be in the same cluster
as opposed to pairs connected with a low weight. We define
a community matrix as

Ck(i,j) _ { W((l)vf)
®)

where k is the number of clusters. The random community
matrix is obtained by randomly assigning each edge to one
of k clusters and comFuting equation 8 for the random
assignments to obtain Crl;;l';), such that p = {1,2,...,r} is the
number of permutations. Membership size of each cluster
may differ between the random model and the detected
community structure for each p, but the number of clusters
must be the same. A large p is recommended such that
numerous random clustering possibilities are evaluated. The
average inter-cluster weight corresponding to each clustering
matrix is computed as

-1 o (i) ™

if v; and v; are in the same cluster
otherwise
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Averaging over all p such that C mn = ‘Z‘,p mn d prov1des

the random inter-cluster value. We then ﬁnd k such that 0 =
Ck—Ck . is maximum. A maximum value indicates that the
vertices within a cluster share significantly larger weights
than if they were clustered with any other set of vertices.
This method relies heavily on weights and demonstrates how
weight distribution is a significant contributor to community
structure.
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D. Multiple Subject Clustering Algorithm

When multiple graphs representing similar information are
available for clustering analysis it would be advantageous to
develop a probabilistic clustering technique by determining
which nodes are more likely to cluster across all graphs,
or all subjects. Therefore, we introduce a probability of
clustering matrix, P, where the entries of P(i,j) are values
between 0 and 1, indicating the likeliness that a node
pair is in the same cluster across multiple graphs. Given
m weighted connectivity matrices, the Fiedler partitioning
method can be applied to each matrix thus separating the
nodes into two distinct cluster sets. The probability matrix,
P, is introduced to keep track of how many times, out of
m similarity matrices, nodes v; and v; are placed in the
same cluster set. We then compute the Laplacian of P and
identify the Fiedler vector and form a bi-partition of P into
a community structure composed of clusters ¢; and c_j.
Since P represents the clustering relationships among nodes
throughout all subjects, the Fiedler partition of P represents
the common community structure to all subjects. The initial
partition set, C = {cy,c_;}, contains k = 2 clusters but if
k > 2 is desired, the process can be repeated by selecting
a cluster in C to partition. In this case, ¢; or c_; may be
selected based on the cardinality of their nodal memberships.
Next, sub-matrices are extracted from the original weighted
connectivity matrices such that they only contain the nodes
of the chosen cluster. These sub-matrices are used to derive
the new probability of clustering matrix, P¥, where y = 1
if cluster ¢y was selected and y = —1 if cluster c_; was
selected. The Fiedler partition will result in two new clusters,
c) and ¢” ;. The final cluster set is C = {c_y,c},c" ;} which
is a concatenation of the two new clusters with the original
cluster which was not chosen for bi-partitioning. Algorithm
1 describes this process for obtaining community structures
for a given number of clusters.

III. RESULTS

In this paper, we are interested in understanding the neural
networks involved during error-related negativity which is a
brain potential response that occurs following performance
errors in a speeded reaction time task. Ninety undergrad-
vate students (55 male) were recruited from introductory
psychology courses at the University of Minnesota whose
EEG was recorded during a speeded-response flanker task
(as previously reported with amplitude-only effects [13]).
The proposed phase synchrony measure was applied to
this set of EEG data containing the error-related negativity
(ERN). Both error (ERN) and correct (CRN) response-locked
averages were computed for each subject , with the number
of trials matched between error and correct for each subject.
Our previous work indicates that there is increased phase
synchrony associated with ERN for the theta frequency
band (4-7 Hz) and ERN time window (25-75 ms) for Error
responses compared to Correct responses [8].

The multiple subject clustering method was then applied
to the set of Error and Correct data in order to divide the
nodes into 2 < k < 20 clusters. We applied the proposed

Algorithm 1 Probabilistic Fiedler Clustering Algorithm

I: Input: m N x N dimensional graphs, G =
{G',G?,...,G™} with vertices V = {vi,v2,..,vn}
and edges E" = {w]; : v, v; € V} such that G" = (V,E")
and r={1,2,...,m}.

2: Input: Number of clusters, k.

3: Output: k clusters C = {cy,c2,...,¢c;} where ¢; CV.
4: C=0

5: for t =2 to k do

6 M =0y

7. for s=1 to |G| do

8: submatrix G* C G°|G* = (V, E®)

9: (V1,V3) = SubRoutine(Fiedler Partition(G*))
10: M(i,j)=M(i,j)+ o (vi,vj) where

_J 1 if nodes v;,v; €V or v;,v; € Vs
o (vi,vj) = { 0 otherwise
11:  end for
122 P= %I
13:  (V},V,2) = SubRoutine(Fiedler Partition(P))
14: CZCU{V],VQ}.
15:  if t # k then

16: V =¢;|li = max,{|c,4|} and ¢, € C
17: E'={w;:vi,v; eV}

18: C=C\{ci}

19:  end if

20: end for

Algorithm 2 Fiedler Partition

Input: graph G = (V,E).

Output: Vertex sets V| and V.

Compute Laplacian Matrix, L, of G.

Compute |V| eigenvectors, u, and eigenvalues, 4, of L.
Order eigenvalues in ascending order: 4} < A, < ... <
6: ur =u; where i = ming{A,}|4, #O0.

7. for j=1to |V| do

Vi
vj € Vs

EANE -

if up(j) =0
if ur(j) <0

9: end for

optimization measure for identifying the best community
structure illustrated in Figures la and 1b.

Our community structure quality measure revealed Error
data were best represented by a community structure com-
posed of 5 clusters; whereas Correct data by 4 clusters. The
high number of clusters is indicative of increased inhomo-
geneity throughout the network during error responses versus
correct responses. The community structure in Figure la is
composed of three groups containing highly synchronized
node pairs in the frontal region of the brain with a cluster
located in the mPFC and two on the IPFC. The existence
of the central cluster in this community structure may be
indicative of the ongoing action-monitoring processes oc-
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Fig. 1: Optimal community structures representing the brain
during error responses (top) and correct responses (bottom).

curring in the structure, as there is no distinct cluster in
the mPFC for the Correct data. As expected, the parietal
regions did not show distinct clusters in either case since
most activity during the task-response test is observed in the
the frontal region of the brain. Finally, we compared the node
pair strengths within the clusters across response types. We
evaluated C* differences between Error and Correct across
all subjects with respect to the number of clusters, k (Figure
2). The plot indicates all community structures derived for
Error responses showed increased synchronization within the
clusters as opposed to the Correct responses, particularly for
k=2,3, and 5. These results show that if the discrimination
between the two response types is used as an optimization
criterion, k =5 would be the best community structure to
use.

IV. CONCLUSIONS

In this paper, we have introduced a cluster detection
algorithm for discovering a common community structure
for multiple networks. We also introduced a new community
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Fig. 2: Optimal community structures representing the brain
during error responses (top) and correct responses (bottom).

quality measure in lieu of modularity. The community de-
tection algorithm and quality measure were used to identify
an optimal community structure representing the multivariate
relationships among neural assemblies of the brain. Our
algorithm may be applied to any set of multiple subjects
represented by weighted or unweighted graphs. The future
work will focus using this clustering method for classifying
between the two response types.
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