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Abstract— New scenarios in diabetes treatment have been
opened in the last ten years by continuous glucose monitoring
(CGM) sensors. In particular, Non-Invasive CGM sensors
are particularly appealing, even though they are still at an
early stage of development. Solianis Monitoring AG (Zürich,
Switzerland) has proposed an approach based on a multisensor
concept, embedding primarily dielectric spectroscopy and op-
tical sensors. This concept requires a mathematical model able
to reconstruct the glucose concentration from the 150 channels
measured with the device. Assuming a multivariate linear
regression model (valid and usable for different individuals),
the aim of this paper is the assessment of some techniques
usable for determining such a model, namely Ordinary Least
Squares (OLS), Partial Least Squares (PLS) and Least Absolute
Shrinkage and Selection Operator (LASSO). Once the model is
identified on a training set, the accuracy of prospective glucose
profiles estimated from ”unseen” multisensor data is assessed.
Preliminary results obtained from 18 in-clinic study days show
that sufficiently accurate reconstruction of glucose levels can
be achieved if suitable model identification techniques, such as
LASSO, are considered.

I. INTRODUCTION

D IABETES is a disease that affects 285 million people
in the world and this number is expected to increase

to 439 million in 2030, thus making diabetes an “epidemic”
disease [1]. In healthy people, glucose levels in the blood are
controlled by insulin using a negative feedback. In people
with diabetes, the body does not secrete insulin (type 1
diabetes) or imbalances in both insulin secretion and action
(type 2 diabetes) occur. Therapy is mainly based on insulin
administration and diet, which are tuned by self-monitoring
of blood glucose (SMBG) levels 3-4 times a day. Never-
theless, blood glucose concentration of the patients is often
outside of the normal range of 70-180 mg/dL. While hyper-
glycemia mostly affects long-term complications (such as
neuropathy, retinopathy, cardiovascular, and heart diseases),
hypoglycemia can be very dangerous in the short-term and,
in the worst-case scenario, may bring the patient into hypo-
glycemic coma. New scenarios in diabetes treatment were
opened in the last ten years, when minimally invasive con-
tinuous glucose monitoring (CGM) sensors, able to monitor
glucose concentration continuously (i.e. with a reading every
1-5 min) for several days (up to 7 consecutive days), entered
clinical research. It has been suggested that the retrospective
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assessment of glucose profiles measured through CGM sen-
sors might help in the optimization of metabolic control [2]
in people with diabetes. On-line applications are potentially
more appealing and with a greater impact in the patient daily
life. Ideally these would include the “smart CGM sensor”, i.e.
a system able to generate alerts when glucose concentrations
exceed the normal range thresholds, combined with “the
artificial pancreas”, i.e. a device conceived for Type 1 people
with diabetes aimed at maintaining glucose concentration
within safe ranges by infusing subcutaneously insulin via
a pump under the control of a closed-loop algorithm (see [3]
and [4] for reviews). Most of the CGM sensors are based on
the glucose-oxidase principle and they are called “minimally
invasive”, because a thin needle must be inserted in the
subcutis. Non-Invasive Continuous Glucose Monitoring (NI-
CGM) technologies have been also investigated [5], [6], and
their ability to monitor glucose changes in the human body
has been demonstrated under highly restricted conditions [7],
[8]. As soon as these conditions become less favourable, e.g.
in daily-life use, several problems have been experienced
due to physiological and environmental perturbations [9].
Solianis Monitoring AG (Zürich, Switzerland) recently pro-
posed a multisensor approach for NI-CGM mainly based on
dielectric and optical sensors. Such an approach has the aim
of achieving a broader bio-physical characterization of skin
and underlying tissues in order to account for confounding
factors which can significantly deteriorate the accuracy of
glucose readings. In particular, dielectric spectroscopy tracks
changes in the dielectric properties of skin and underlying
tissues modulated by glucose level variations and by other
physiological “perturbing factors” [10]. Optical, as well as
temperature, humidity, and movement sensors, embedded
within the same sensor substrate, can provide useful informa-
tion for the compensation of such “perturbing factors” [10].
In this multisensor approach, 150 individual measurements
are collected every 20 seconds. Fig. 1 (left) shows some
representative data taken from 16 channels. Fig. 1 (right)
shows reference glucose concentrations measured in parallel
through a standard laboratory glucose analyzer (HemoCue).
A crucial point is thus to design and identify a mathematical
model which can combine the information provided by the
above mentioned 150 multisensor channels in order to obtain
an estimate of the glucose level (Fig. 1, middle). The method
to combine several time-series (i.e. the 150 multisensor
channels) in a model with the aim of estimating a target
variable (i.e. HemoCue glucose readings) can be described as
a multivariate regression problem. In this work, we consider
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Fig. 1. Scheme of model building. Data correspondent to the 150
multisensor channels (matrix X , left) are combined through a model (to
be built, middle) with the aim of inferring glucose levels measured through
a gold-standard technique (vector y, right).

a static linear regression model determined with data from
different subjects and thus with a global validity, and we
investigate three techniques usable for parameter estimation,
i.e. Ordinary Least Squares (OLS), Partial Least Squares
(PLS) and Least Absolute Shrinkage and Selection Operator
(LASSO). For such a scope, multisensor data and reference
glucose, obtained in 18 in-clinic study days, are considered.
Performance of the three parameter estimation techniques
were initially assessed in terms of “internal validation” cri-
teria over the first 9 study days. Then, the identified models
undertook the so-called “external validation” phase in order
to assess their usability to reconstruct glucose concentration
from multisensor data that have not participated to model
derivation (remaining 9 study days). Results show that the
regularization performed within the LASSO method is of
crucial importance when the aim is prospective estimation
of glucose from unseen multisensor data.

II. DATA BASE

Data was gathered from 6 subjects with Type 1 Diabetes
Mellitus (T1DM) as part of an experimental clinical study
approved by the local ethical review commission and run
according to the requirements of GCP. Reference glucose
and multisensor data were available for each of the 18 study
days considered in this present paper. The length of an
experiment was 8 hours during which plasma glucose was
induced to vary according to a predetermined profile either
orally or by i.v. glucose administration. Multisensor data
was obtained by placing the multisensor in the upper arm
with a sampling time interval of 20 sec, while reference
glucose values were acquired in parallel, every 10 to 20
min, using a HemoCue Glucose Analyzer. The database,
consisting of roughly 70000 multisensor data points and
2000 glucose reference points, was then split in two subsets
of 9 study days each of approximately the same dimension.
Each Multisensor channel was centered and scaled and
a causal median filter for removing outliers was then applied.

Data for Model Identification. The first dataset, subse-
quently called “the training set”, was first used to perform
a k-fold cross validation analysis for model complexity
selection and, subsequently, to estimate model parameters

by the techniques described in Section III.
Data for Model Test. The second data set was used to test
the previously identified models over new, “unseen” data, as
external validation reported in Section IV.

III. MODEL IDENTIFICATION

A. Problem Statement

Formally, the linear regression model is given by:

y = Xβ + v (1)

where y is a (N × 1) vector representing the target variable
(glucose), β is the (p × 1) vector containing the unknown
coefficients of the global linear model (i.e. valid for all the
subjects), X is the (N × p) matrix whose columns contains
the time series measured by the multisensor and v the (N×1)
vector of the errors depicting the data unexplained by the
model. Here p is around 150, whereas N is of the order
of some thousands and typically depends on the number
of study days considered. Denoting the Residual Sum of
Squares as:

RSS(β) = [(y −Xβ)T (y −Xβ)] (2)

the model parameters can be estimated by several techniques,
and in particular by means of the three methods described
in the next paragraph.

B. The Three Chosen Parameter Estimation Methods

Ordinary Least Squares (OLS)
OLS is a well known method for the estimation of

linear regression models. The solution β̂OLS minimizes the
distance between the reference values contained in y and the
model predictions obtained for a certain parameter vector β̂:

β̂OLS = argmax
β̂

RSS(β̂). (3)

There exists a closed form solution for the calculation of
β̂OLS . Since the high dimension of the measurement space
and the high correlation between subset of predictors cause
the X matrix to be rank-deficient (making the problem ill-
conditioned) a QR decomposition of X is used for estimating
the parameter vector β̂OLS

β̂OLS = (XTX)−1XT y = R−1QT y (4)

where X = QR, with Q being a (N × p) orthogonal matrix
and R a (p× p) upper-triangular matrix.

Partial Least Squares (PLS)
PLS is a technique for the estimation of linear regression

models resorting to an idea also used by Principal Compo-
nent Analysis. In particular, PLS tries to find m(< p) new
variables, the so-called latent variables, with high variance
and exhibiting high correlation with the target variable y [11].
The PLS estimate of the parameter vector is given by:

β̂PLS =Wθ (5)
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Fig. 2. Study day of representative subject # 2. Reference glucose (circles)
vs. estimated glucose profile (lines) by means of OLS (top), PLS (middle)
and LASSO (bottom) in internal validation.

where W is a (p×m) matrix representing the kernel of the
transformation from the original to the new latent variables
and θ is a (m × 1) parameter vector of the linear model
from the latent variables to the target y. See [12] for more
details. The number of new latent variables m controls
model complexity, since it is strictly related to the amount
of variance retained from the original variables.

Least Absolute Shrinkage and Selection Operator (LASSO)
The LASSO solution minimizes a cost function consisting

of (2) plus a regularization term over the model parameter
vector β̂:

β̂LASSO = argmax
β̂

RSS(β̂) + λ

p∑
j=1

|β̂j |

 (6)

λ controls the model complexity and avoids the coefficient
of the linear model to assume large absolute values, thus
preventing overfitting as might happen with OLS. Thus,
besides shrinking the linear model coefficients, LASSO also
performs variable selection according to λ. For values of
λ sufficiently small, the coefficients of some variables are
exactly zero, making easier the interpretation of the results
[13]. The nature of the regularization term makes the LASSO
solution non linear in y and its computation a quadratic pro-
gramming problem. The solution can be obtained efficiently
for example with a modification of the LAR algorithm [14].

C. Assessment Criteria for Model Identification

The parameters controlling the model complexity for PLS
and LASSO can be estimated by 10-fold cross validation
[11]. Model parameters were then estimated with the three
aforementioned techniques. Afterwards, each model was
used to predict glucose profiles with the same multisensor
data used for its identification. Each estimated glucose profile
was first shifted to the value of the first reference glucose
value and then compared with the reference HemoCue mea-
sures by means of the Root Mean Squared Error (RMSE)
and the Pearson coefficient of determination (R2).

D. Internal Validation Results

By visual inspection of Fig. 2 and observing the key
indicators for internal validation (Table I), it seems that the
linear model obtained with OLS outperforms both PLS and
LASSO in estimating glucose profiles when data used for the
estimation of the models are considered. This is obviously
expected since OLS estimates the model parameters in such
a way to maximize the adhesion to the training data without
any constraint on the complexity. However, this indicates that
OLS overfitted the training data with the risk of leading to
poor generalization when trying to estimate glucose from the
test set multisensor data (see Section IV).

IV. MODEL TEST

A. Assessment Criteria for Model Test

Models identified in Section III-B have been tested for
validity using a multisensor test data set unseen during
the model derivation stage. The relative glucose estimates
undergo an initial adjustment of the baseline considering
the first reference glucose value as happened in Section III-
C. This means that a blood glucose finger stick measure
is required in an every-day use setting to allow for the
adjustment of the baseline. The performance of the three
models in prospective glucose profile estimation is assessed
by means of the same indexes used in internal validation.

TABLE I
KEY INDICATORS FOR INTERNAL AND EXTERNAL VALIDATION. ROOT

MEAN SQUARED ERROR (RMSE) AND PEARSON COEFFICIENT OF

DETERMINATION (R2).

RMSE [mg/dL] R2 (averaged over runs)

Internal
Validation

External
Validation

Internal
Validation

External
Validation

OLS 15 781.5 0.97 0.44

PLS 39.6 92.6 0.88 0.63

LASSO 61.3 66 0.79 0.61

B. External Validation Results

The key indicators in Table I show that the LASSO esti-
mated model outperforms both OLS and PLS thus achieving
better generalization performances in predicting “unseen”
data (see Fig. 3). Prediction accuracy is improved because
LASSO forced a sparse solution (with many coefficients
shrank to zero) and estimated parameters with low absolute
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values, trading off decreased variance for increased bias
[11]. While RMSE is worse for PLS than for LASSO, the
averaged correlation coefficients (R2) over study days of the
profiles for the two methods are comparable, indicating that,
although PLS might give good prediction of glucose trends,
it is too sensitive to noisy channels (see Fig. 3). This might
be due to the fact that noisy channels containing glucose
or confounding factors information might be used by PLS
for building new latent variables. Instead, the regularization
term in the cost function of LASSO leads to the selection of
original variables that are likely to be less sensitive to noise.
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Fig. 3. Study day of representative subject # 2, different from the one
showed in Fig. 2. Reference glucose (circles) vs. estimated glucose profile
(lines) by means of OLS (top), PLS (middle) and LASSO (bottom) in
external validation.

V. CONCLUSIONS

CGM sensors allow monitoring glucose concentration
continuously for several days and are of great interest in
both research and clinical practice. NI-CGM technologies
are still at an early stage of development, but they are
particularly appealing for obvious reasons related to patient’s
comfort. The multisensor platform for NI-CGM proposed
by Solianis Monitoring AG (Zürich, Switzerland) has been
considered in this work. In this multisensor approach, a math-
ematical model must be developed to reconstruct glucose
concentration from the data of 150 measurement channels.
The objective of this paper was the assessment of some
techniques usable for such a purpose assuming a linear
regression model. Nine study day data were considered
for model identification and nine, collected from the same
subjects, for model test. Results showed that both LASSO
and PLS avoid the typical overfitting occurring with OLS.

LASSO outperforms PLS in external validation performances
since the latter seems less robust to noisy channels. Indexes
in Table I show that point accuracy performance of the non-
invasive sensors are not yet comparable with state of the
art “gold standard” SMBG sensors (HemoCue). However,
thanks to its continuous nature, the non-invasive multisen-
sor device combined with the LASSO model may be a
good candidate for being used as a complement to SMBG.
Further developments of this work will be focused on the
confirmation of the results over a wider data set and on the
consideration of more key indicators for assessing models
performance and the robustness of the model to data sets
from new subjects not part of the model derivation data
set. Moreover, strategies for improving the calibration of the
reconstructed glucose profiles can be developed [15].
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