
 
 

 

  

Abstract—The complexity of the human brain and the 
limitation of any one imaging approach motivates the need for 
multimodal measurements to better understand cerebral 
processing. A very natural goal is to integrate 
electrophysiological and hemodynamic activity. Among them, 
concurrent EEG-fMRI studies have shown great promise for 
understanding intrinsic brain properties yet analyzing such 
data presents a significant methodological challenge. Here, we 
propose a multivariate parallel ICA decomposition 
incorporating dynamic neurovascular coupling for concurrent 
EEG-fMRI recordings. The goal of our algorithm is to fuse 
multimodal EEG-fMRI information and detect/interpret the 
relationship between electrophysiological and hemodynamic 
sources via a temporal neurovascular connection enhancement. 
We analyze the performance of the algorithm on a valid 
simulation based on real EEG and fMRI components (sources) 
from our previous works and a neurovascular coupling built 
from an extended ‘balloon model’. The results from our 
simulations yield an accurate source tracking and linkage for 
concurrent EEG-fMRI, and provide a novel and efficient way 
to combine EEG and hemodynamic responses. 

I. INTRODUCTION 

NE of the essential problems in brain science is how 
electrical and hemodynamic signals that are acquired 

by e.g. electroencephalography (EEG) and functional 
magnetic resonance (fMRI) relate to each other during 
different states of cerebral activity. Scalp EEG samples the 
synchronous post-synaptic potentials in the cerebral cortex 
which lead to neuronal input processing, whereas blood-
oxygenation-level dependent (BOLD) fMRI measures a 
delayed hemodynamic response to neuronal activity. 
Previous research has shown a linear relationship between 
local field potentials and multi-unit activity and the BOLD 
signal [1]. Methodologically, the motivation for combining 
electroencephalography (EEG) and functional magnetic 
resonance imaging (fMRI) is obvious. The advantage of 
EEG is millisecond temporal resolution and the ability to 
measure neuronal activity directly. In contrast, fMRI has 
excellent uniform spatial resolution but measures an indirect 
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metabolic correlate of neuronal function - the BOLD signal, 
over a considerably longer time period of seconds. EEG and 
fMRI are complementary and thus an approach which 
combines fMRI and ERP can potentially draw on the 
strengths of each and provide additional information not 
afforded by either technique alone. The neurophysiologic 
and methodological motivations, along with the technical 
improvements that allow concurrent data acquisition, make 
combining EEG and fMRI a popular yet challenging 
ongoing effort that employs a variety of approaches. 

Independent component analysis (ICA) is a widely used 
approach for blind source separation. In our previous work, 
we have applied ICA models to detect either single-modality 
sources of fMRI spatial maps (sICA), EEG time courses 
(tICA) and spectral information (spICA), or a ‘post’ 
coupling estimation (deconvolution) between the identified 
components [2-7]. In this paper, we propose a new 
multivariate approach to detect concurrent EEG-fMRI 
sources by fusing the neurovascular dynamics into a parallel 
ICA framework. Instead of tracking stationary projections 
independently from a single modality as in the 
aforementioned work, our algorithm here identifies the 
multivariate sources from EEG and fMRI data 
simultaneously based on a dynamic neurovascular coupling 
optimization. 

The paper is organized as follows. Section II describes the 
mathematical model and the algorithm development. Then 
we evaluate the performance of our algorithm on a 
simulation based on a balloon model [8, 9] that generates 
realistic neurovascular couplings in section III. Experimental 
results are presented in section IV and section V concludes 
the paper. 

II. MODEL AND ALGORITHM 

A. Infomax ICA 
The basic idea underlying ICA is to assume that sources 

are independent and distributed sparsely. In this paper, we 
use an ICA approach based upon the infomax principle.  

We start with the assumption of independence of the EEG 
rhythm and fMRI spatial sources approximately, 
respectively, using the following generative model for the 
data, which maps from sources to observed data feature 
(Equation (1)), where X is the observations of EEG or fMRI 
data; A is a linear mixing matrix, the loading parameters 
encoding the temporal pattern each source would cause over 
time; S contains the sources desired, i.e. EEG rhythms or 
fMRI spatial maps.  
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X AS=      (1) 
The goal of ICA is to find a linear mapping of W such that 

W approximates the inverse of A in order to determine the 
unmixed components U.  

U WX WAS= =     (2) 
The infomax algorithm employs a gradient ascent 

algorithm to maximize the entropy of the output of a single 
layer neural network. By infomax, we can estimate the 
unmixing matrix W in a maximum output entropy H(Y) 
sense encoded by the cumulative density function g, without 
knowing the sources. The resulting update equations for the 
algorithm to compute the W and the sources U are as follows 
[10, 11]: 
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 (3) 

where TW W  is the natural gradient that rescales the 
gradient to simplify the learning rule and speed up the 
convergence. The transfer function g is chosen to be a 
logistic function to optimize the information flow.  

B. Parallel ICA Framework for Concurrent EEG-fMRI 
The aim is to construct EEG and fMRI ICA source 

localizations while using optimal neurovascular couplings as 
a constraint within the parallel EEG-fMRI ICA computation. 
Fig 1 shows our framework which includes three key parts.  

 
Fig. 1. Parallel EEG-fMRI ICA Model 

1) ICA learning: 
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EA�  and FA�  are the EEG and fMRI time-course ‘features’ 
and U is the estimation of the sources.  

2) Neurovascular optimization: 

{ } ( ){ }1 1,  ,  , max ,E E F F E F E FA W A W A A NCF A A− −= = =� �� �    (6) 

EW�  and FW�  are the EEG and fMRI demixing factors 
obtained from the ICA learning. NCF represents a 

neurovascular coupling function between EEG and fMRI, 
which will be discussed next. 

3) Balance verification: 
This part is semi-hidden. Our model simultaneously 

optimizes both the maximum independence of EEG and 
fMRI sources in addition to the maximum neurovascular 
coupling by tuning the learning rates for the correlation and 
crosschecking the impacts on the entropy maximization. 
Additionally we include bias correction, annealing to avoid 
overfitting and stability control, et al., to prevent one of the 
criteria from dominating. 

C. Neurovascular Optimization 
For concurrent EEG-fMRI data, an intuitive linkage 

between the estimated parallel ICA sources is a 
neurovascular coupling model. 

A dynamic EEG-fMRI neurovascular optimization 
algorithm is developed here to integrate two different 
modalities as well as to connect the two ICA models. 
Realistic neurovascular modeling involves many 
nonlinear/linear factors [9], which will be discussed in the 
following simulation. In fMRI, a linear convolution 
approach to determine a hemodynamic response function 
(HRF) is commonly used [12-14]. However, the HRF as a 
linear representation of neurovascular coupling between 
EEG and fMRI can vary between brain regions, brain 
rhythms and subjects [15-17]. Previous concurrent EEG-
fMRI works indicate the hemodynamic temporal delay is a 
main ingredient of neurovascular correlates [18]. Here we 
use a cross-correlation term with time lags to detect the 
hemodynamic delay and determine the HRF using the 
following canonical form. 
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where 
eA  and 

fA  are the column vectors of the mixing 

matrices EA  and FA  (time-course features) from EEG and 
fMRI separately. ( )K τ  is the covariance on lag τ . E is the 

expectation. ,eA τ  is 
eA  lagged τ , where the ∧  denotes 

removing the mean 
Aμ , σ  is the standard deviation. The 

HRF is computed by two gamma density functions, where 
the delay τ  controls the HRF peak timing. The rest 
parameters are set as default in the canonical form. 

Then we apply a correlation between ‘HRF-convolved’ 
EEG and fMRI time courses as our NCF. To reach the 
maximum of the NCF, i.e. maximizing the correlation, a 
gradient ascent is again performed.  
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 into the learning rate, the NCF learning rules 

are simplified as Equations (9) and (10). It also very easy to 
understand, as the direction of eA  is controlled by fA  and 

their correlation; vice versa. The sign(.) is to make sure it 
reaches the absolute maximum of either the positive or 
negative correlation. 

III. SIMULATION DESIGN 
To test the performance of our algorithm, we devise a 

realistic simulation for the concurrent EEG-fMRI process 
(Fig. 2).  

 
Fig. 2. Simulation Model Flowchart 

Recent studies have provided an exceptional modeling 
approach for forward models of neurovascular coupling that 
are neurophysiologically grounded [19-22]. Among them, 
the “balloon model” is quite promising and well developed 
[8]. Here in Fig. 2 we simulate the neuroelectrical signals 
and their hemodynamic responses based on an extended 
balloon model [9]. The balloon model deals with the 
mesoscopic link between blood flow and BOLD signal. The 
extended model covers the dynamic coupling of synaptic 
activity and flow a complete model, relating induced 
changes in neuronal activity to BOLD signal. To simulate 
the concurrently measured whole brain EEG-fMRI signal, 
we further extend it by linearly mixing with EEG rhythm 
patterns EEGS  and fMRI spatial patterns 

FMRIS  with 

susceptibility and signal-to-noise controls (Equation (11)), 
with the parameters of sα , sβ , xα xβ  and λ, ν, δ η 
respectively. The behavior of this entire model provides us a 
realistic brain signal simulation in terms of the concurrent 
EEG-fMRI. 
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IV. EXPERIMENTS AND RESULTS 
We generate simultaneous EEG and fMRI datasets by the 

model in part III. Source patterns for EEG and fMRI are 
selected as five EEG rhythms (delta, theta, alpha, beta, 
gamma) and five major neuronal regions (PCC, Occipital, 
frontal, DMN and temporal lobe) respectively, based on our 
previous work [17]. After generating the time series that are 
generated by the balloon model, random Gaussian noise 
(SNR=5) is added. 

The parallel ICA results are indicated in Fig 3. We 
simulate 5 ICs which are used as the ground truth. Each IC 
contains EEG rhythm pattern recovery (1st column; thick 
blue line; black dot line as the original mean); fMRI spatial 
pattern recovery (2nd column top; bottom as the original); 
EEG and fMRI time course recovery (3rd and 4th columns; 
blue as the original balloon model outputs; red as simulated 
EEG and fMRI time series; black as recovery). Overall, the 
parallel ICA successfully matches the source pattern 
linkages and neurovascular couplings, with a high accuracy 
of correlation between 0.771~0.982. 

V. CONCLUSION 
In this paper a new parallel ICA algorithm for 

simultaneous EEG-fMRI recording was introduced and 
tested in a neurovascular simulation. The results support that 
our method can detect coherent linked hidden sources 
among concurrent EEG-fMRI measurements. The algorithm 
contains a dynamic neurovascular coupling detection and 
optimization; and appears to be robust to noise, a limitation 
of other existing methods such as inverse calculation or 
deconvolution. Future directions include further improving 
the NCF estimation, e.g. using partial least square instead of 
correlation; using more information to improve the estimate 
of HRFs, e.g. one for peak delay and one for undershoot; 
estimating the nonlinear cascade between EEG and fMRI 
coupling. Our results demonstrate that data-driven methods 
can be successfully combined with model-driven methods. 
We believe that these two major approaches for EEG-fMRI 
research are complementary and should be used together. 
For instance, applying neurophysiologic models, such as the 
balloon model, into the coupling optimization in our parallel 
ICA model may allow us track the nonlinear neurovascular 
relationship that is known to exist.  
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