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Abstract— Electroencephalogram (EEG) recordings of brain
activities can be processed in order to augment the brain’s
cognitive, sensory, or motor functionality. A representative, yet
analytically tractable, model is essential to EEG processing.
Several studies have examined different statistical models for
EEG power spectrum. But recent studies have shown that not
only the power, but also the phase of the spectrum, carries
relevant information on brain activities. As a result, this paper
focuses on the complex-valued spectrum of EEG, and proposes a
general non-circularly-symmetric multivariate Gaussian model
for this spectrum. This simple model can encapsulate the
information in both power and phase of the spectrum, and
its validity for EEG data has been verified using standard
statistical tests.

I. INTRODUCTION

During the past two decades, electroencephalogram (EEG)

signals have been widely used in brain-computer interface

(BCI) systems to provide a non-muscular channel for the

brain to communicate with the external world. A BCI

translates the electrical activity of the brain into signals

that control external devices, which can be utilized to help

disabled individuals or used in commercial applications.

One type of these systems is spontaneous BCI, where the

EEG signal generated from a mental imagery task, such as

hand/foot movement imagination, is used for brain-computer

interfacing. This paper focuses on the analysis of EEG

signals generated by these mental imagery tasks.

Many feature extraction methods which are currently used

for spontaneous BCI systems are based on frequency domain,

also called spectral, analysis of EEG signals. Although

complete representation of the EEG signal in the frequency

domain results in a complex-valued representation, these

methods usually only consider the power spectral density

and ignore the phase of EEG spectrum.1 However, recent

studies in neuroscience have revealed that there exist relevant

information carried in the phase of electrical activities of the

brain, both in microscopic level (the phase of neural firings)

and in macroscopic level (the phase of EEG signals) [1]–

[4].Furthermore, recent studies on EEG source separation

algorithms using independent component analysis (ICA)

method have shown that utilization of the complex-valued

EEG spectrum, instead of power spectrum, significantly

improves the performance of ICA algorithm [5].
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1Note that the phase of EEG spectrum is different from the phase coupling
of oscillatory activities from different parts of the brain, which is usually
measured by phase locking value.

In this paper, we study the statistical characteristics of

the complex-valued representation of the EEG signals in the

frequency domain. Since EEG characteristics change over

time, this complex-valued representation is obtained using

a short-time Fourier transformation (STFT), as explained in

the next section. In the literature, there exist several studies

on the statistical properties of power spectral density of the

EEG during different brain activities; however, to the best of

our knowledge, there is no statistical study on the complex-

valued spectrum of these signals.

We propose a complex-valued multivariate Gaussian

model for the EEG spectrum and perform various statistical

tests to study how accurately this model fits experimental

EEG data. Furthermore, in order to study if there exist

any relevant information in the phase of EEG spectrum,

we examine its propriety or circular-symmetry properties.

By definition, a complex-valued random variable z is called

proper or circularly-symmetric if its real and imaginary parts

are independent and have equal power. If z is proper, its

phase is uniformly distributed and conveys no information.

In many situations, the complex-valued spectrum of the

signal is proper, and hence the phase of its spectrum is

ignored and only the power of the spectrum is analyzed.

In the case of EEG signals obtained during mental imagery

tasks, however, our studies reveal that the EEG spectrum is

improper. As a result, we conclude that the phase of EEG

spectrum conveys information relevant to brain activities,

which is ignored in the commonly used real-valued power

spectral representation. The rest of this paper is organized

as follows. Section II provides the general complex-valued

multivariate Gaussian model which is used in this paper for

the EEG spectrum. Section III explains the specifications of

the experimental setup, and Section IV discusses the results

for each statistical test used to verify the proposed model.

II. MULTIVARIATE COMPLEX GAUSSIAN MODEL

In this paper, we propose a multivariate Gaussian model

for the complex-valued EEG spectrum. We show that like

many other biological signals, EEG spectrum can be modeled

by a multivariate Gaussian distribution. The main advantage

of a Gaussian model is that complete characterization of this

model only requires estimation of the first and second order

statistics of the data. Furthermore, a multivariate Gaussian

model provides a mathematically tractable framework for

development of more efficient signal processing and feature

extraction algorithms for analysis of the EEG spectrum. In

Section IV, we will examine the validity of this model for

complex-valued spectrum of the EEG signal in each channel.
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A key feature of the model presented in this paper is

that here we deal with complex-valued entities which require

special second-order treatment, as explained below. Let z =
[z1, z2, . . . , zK ]T be a Gaussian random vector2 each element

of which is a complex-valued random variable that can be

decomposed into its real and imaginary parts as follows:

zi = xi + jyi. Second order characterization of z requires

knowledge of both of the following matrices [6]:

covariance : CzzH = E
{

(z− z̄)(z− z̄)H
}

(1)

pseudo-covariance : CzzT = E
{

(z− z̄)(z− z̄)T
}

(2)

Let z̃ = [x1, . . . , xK , y1, . . . , yK ]T . Then, CzzT and CzzH

are uniquely determined by Cz̃z̃T , and vice versa. Indeed, it

can be shown that

CzzH = CxxT +CyyT + j(CyxT −CxyT ), (3)

CzzT = (CxxT −CyyT ) + j(CxyT +CyxT ), (4)

where x = [x1, . . . , xK ]T and y = [y1, . . . , yK ]T . The

probability density function (pdf) of z can be determined in

terms of CzzH and CzzT or alternatively in terms of Cz̃z̃T .

Throughout this paper, we use the following formulation for

the pdf of vector z in terms of the vector z̃:

fz(z) = |2πCz̃z̃T |
−

1

2 exp
{

−
1

2
(z̃ − z̃)TC−1

z̃z̃T
(z̃ − z̃)

}

.

By definition, random vector z is called proper [6] or

circularly symmetric [7] if CzzT = 0; otherwise, it is called

improper or non circularly-symmetric. From (4), it can be

seen that a proper vector z has the following properties:

CxxT = CyyT and CxyT = −CT

xyT . In the univariate case,

these conditions will be reduced to the ones explained in

Section I. As mentioned there, the phase of a proper complex

variable is distributed uniformly and conveys no information.

Thus, we will use the propriety of the EEG spectrum to

measure whether or not its phase conveys any information.

III. EXPERIMENTAL SETUP

In this paper, our analysis is based on data set V of the

BCI competition III [8] which is available online. This data

set consists of EEG signals of three normal subjects recorded

during four non-feedback sessions. During each session, the

subject sequentially imagines three different tasks which

constitute the different classes: repetitive self-paced left

hand movements (class 1), repetitive self-paced right hand

movements (class 2), and generation of words beginning

with the same random letter (class 3). Each task lasts 15

seconds and is continuously followed by another randomly

selected task requested by the operator. The EEG signals are

recorded at 512Hz sampling rate using a Biosemi system

with 32 electrodes located according to the International 10-

20 system. Our analysis is performed on 8 centro-parietal

channels: C3, Cz, C4, CP1, CP2, P3, Pz, and P4, which are

suggested by the data set providers.

2In this paper, scalars are shown in lowercase (e.g., a), column vectors in
boldface lowercase (e.g., a), and matrices in boldface uppercase (e.g., A).
The transpose and the Hermitian transpose of A are respectively denoted
by A

T and A
H . Also, ā = E{a}, and E{.} denotes expectation.

Fig. 1. Observation windows of length Le and their corresponding samples.

Consider the multichannel EEG signal recorded using

these 8 electrodes during a mental imagery task. This signal

can be represented by a matrix with the columns corre-

sponding to different channels and the rows corresponding to

different time instances. We apply an STFT on each channel

of this EEG data to get the frequency domain representation

of the EEG at each time instant. The applied STFT uses

overlapping Tukey windows of length 1 second (Nw = 512)

and α = 1/8. Then, the spectral components in the range of

8 − 32Hz with a frequency resolution of 2Hz are retained.

This frequency band approximately corresponds to the α
rhythm (8− 12 Hz) and β rhythm (12− 30 Hz) of the brain

which are known to be associated with mental imagery tasks.

The resulting multichannel EEG spectrum at any time can

be represented by a complex-valued matrix Z of size 13×8.

It is well known in the literature that the characteristics of

EEG signals during mental imagery tasks are time-varying.

However, over a short observation period, EEG can be

considered to be quasi-stationary. Assuming that the EEG

data is quasi-stationary over an observation window of Le

seconds, we consider all complex-valued EEG spectrums that

are observed during this period to form a set of samples with

the same statistical characteristics. For simplicity, we call this

set of samples an ensemble.

As illustrated in Figure 1, the EEG signal during each

mental imagery task is divided into several overlapping

observation periods (i.e., E1, E2, ...) of length Le. During

each Ei, the signal is transformed from time-domain to the

frequency-domain, using STFT of length one second with

overlapping factor of 15/16. The resulting samples (i.e.,

S1, S2, ...) form an ensemble Ei. Each multichannel sample

(Si) in this ensemble can be represented by a complex-valued

matrix Z ∈ C13×8, where each column of Z represents the

vector of 13 frequency components of an EEG channel.

We propose that if the duration of the observation window

(Le) is short enough, each column of Z can be modeled as an

improper complex-valued Gaussian random vector as defined

in Section II. This model will be verified in three steps:

1) Validating the normality of individual components of

Z, denoted by zmn, for different values of Le and

finding the maximum value of Le over which all zmn

fit the complex-normal model;

2) Validating the joint-normality of each column vector
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(a) α-band, subject 1
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(b) α-band, subject 2
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(c) α-band, subject 3
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(d) β-band, subject 1
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(e) β-band, subject 2
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(f) β-band, subject 3

Fig. 2. Percentage of verified normal EEG components for left hand movement task performed by different subjects is plotted for different frequencies
averaged over channels. (For more clarity, only five frequency components of β-band are illustrated.)

of Z, denoted by zn, over the observation length Le

determined in Step 1.

3) Validating the impropriety of each zn, over the obser-

vation length Le determined in Step 1.

IV. STATISTICAL TESTS

A. Testing the Normality of zmn

This section studies the normality of each complex-valued

frequency component of the multichannel EEG spectrum Z.

We test the following null hypothesis

H0 : zmn = xmn + jymn ∼ CN (µz ,Czz∗ ,Czz),

i.e., zmn has a univariate complex-valued Gaussian distribu-

tion with unknown mean, variance, and pseudo-variance. As

described in Section II, H0 is equivalent to the hypothesis

H ′

0
: z̃mn =

[

xmn

ymn

]

∼ N2(µz̃,Cz̃z̃T ),

i.e., z̃mn has a bivariate real-valued Gaussian distribution

with unknown mean and covariance.

We examine hypothesis H ′

0
using the well-known Mardia’s

multivariate normality test [9] with a significance level of

0.05. In order to find the maximum length Le over which

the EEG signal can be assumed to be quasi-stationary, we

have repeated Mardia’s test for various values of ensemble

length Le from 2 to 10 seconds. The test results for Task 1
of all three subjects are shown in Figure 2. We have reported

the percentage of ensembles whose samples are verified to

have Gaussian distribution. Parts (a-c) of this figure illustrate

the results for α-band frequency components, and Parts (d-f)

illustrate the results for β-band. It should be mentioned that

since all the channels exhibited similar trends in the tests,

the results reported in Figure 2 have been averaged over

all 8 channels. This figure reveals that despite of the inter-

subject and inter-frequency variability of the results, in all

the situations, the complex-valued Gaussian model describes

the experimental data more accurately as the length of Le

decreases. Specifically, for Le = 3 seconds, on average only

%15 of the of the ensembles are rejected to have samples

with normal distribution. The test results show similar trend

for the other two tasks.

It is worthy to mention that when the resulting percentages

are averaged over all frequencies, there is no significant vari-

ation between different tasks, different subjects, or different

channels. As an example, Figure 3.a provides the average

percentage of verified normal cases for first subject’s left

hand movement task, plotted for all the 8 channels. Figure

3.b compares the results of all three tasks for the first subject,

which are again very close to each other. The same trend can

be seen in Figure 3.c for one task over all three subjects.

As a result, we can conclude that H0 is valid if the length

of the observation window is small enough. Thus, we set

Le = 3 seconds in the rest of this paper. It should be noted

that even for large Le, only in half of the cases H0 is rejected.

B. Testing the Normality of zn

The results of the previous test showed each individual

zmn element can be modeled as a complex-valued Gaussian

random variable when Le is small enough. This is a neces-

sary but not sufficient condition for joint Gaussianity of all

elements of vector zn. This section examines the following

hypothesis H0 : zn = xn + jyn ∼ CNM (µz,CzzH ,CzzT ),
where M = 13 is the number of frequency components

in the EEG spectrum, and CNM denotes the M-variate

complex-valued Gaussian distribution. H0 is equivalent to

the following hypothesis:

H ′

0
: z̃n =

[

xn

yn

]

∼ N2M (µz̃,Cz̃z̃T ).
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(a) Left hand movement, First subject
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Fig. 3. Percentage of verified normal EEG components for (a) left hand movement of Subject 1 in different channels, (b) different tasks of the first subject
averaged over channels, and (c) left hand movement of different subjects averaged over channels. The values in all figures are averaged over frequencies.

TABLE I

PERCENTAGE OF VERIFIED MULTI-VARIATE COMPLEX NORMAL EEG

CHANNELS FOR DIFFERENT TASKS IN DIFFERENT SUBJECTS.

Task Subj. 1 Subj. 2 Subj. 3

(1) 0.9978 0.9676 0.9899
(2) 0.9488 0.9939 0.9943
(3) 0.9303 0.9873 0.9938

TABLE II

AVERAGE P-VALUE OF MULTI-VARIATE NORMALITY TEST ON EEG

CHANNELS FOR DIFFERENT TASKS IN DIFFERENT SUBJECTS.

Task
P1 P2

Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3

(1) 0.9842 0.9740 0.9798 0.3118 0.3019 0.3139
(2) 0.9622 0.9776 0.9811 0.3042 0.3180 0.3135
(3) 0.9500 0.9803 0.9822 0.3010 0.3148 0.3118

Assuming Le = 3 seconds from previous section, we have

32 samples in each ensemble to examine the multivariate

vector z̃ of the relatively large dimension 2M = 26.

Consequently, Mardia’s multivariate normality test cannot be

utilized in this section. We use the multivariate normality

test proposed by [10], which is designed to overcome this

small-sample-size problem. The results of this test for a

significance value of 0.05 are presented in Table I. The

average p-values of this test are also reported in Table II.

The fact that multivariate-normality of zn is only rejected

in less than %10 of the cases, together with the fact that

individual elements of zn are shown to be normal, confirms

with high confidence that our proposed multivariate normal

model for the vector zn fits the experimental data.

C. Testing the Propriety of zn
This section examines the propriety, or circular-symmetry,

of the complex-valued EEG spectrum for each channel. As

mentioned in Section II, if zn is proved to be improper,

we can conclude that the phase of complex-valued spectrum

obtained from STFT has relevant information which will be

lost in the power spectral density representation. Therefore,

we examine the hypothesis H0 : CxxT = CyyT , which is

a necessary condition for zn to be proper. In other words,

rejection of H0 is a sufficient condition for zn to be improper.

We use the test in [11], which examines the equality of

two covariance matrices with small number of samples. The

results for a significance value of 0.05 show that for all the

cases, hypothesis H0 is rejected. Indeed, all the resulting test

statistics have large values, with an average of 165, whereas

the critical value for hypothesis rejection is 1.645.

V. CONCLUSION

Motivated by the recent findings in neuroscience, this pa-

per proposed a complex-valued multivariate Gaussian model

for the EEG spectrum. This model was verified with several

statistical tests on a BCI data set. The test results establish

that the underlying component-wise and joint Gaussianity

assumptions in this model conform with the inherent data

structure. Furthermore, a statistical test for propriety of the

complex-valued spectrum demonstrated that EEG spectrum

is improper or non-circularly-symmetric. This indicates that

not only the amplitude but also the phase of the EEG spec-

trum conveys relevant information. This, in turn, necessitates

the use of complex-valued spectrum rather than the power

spectrum for analysis of EEG data.

The results of this paper can be exploited in the develop-

ment of new feature extraction or classification algorithms

for BCI sytems, which take into account all the information

conveyed by the complex-valued representation of the EEG

signals in the frequency-domain.
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