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Abstract—In this study, we report our development of a 

patient-specific rule-based seizure prediction system. Five 
univariate and one bivariate nonlinear measures were 
extracted from non-overlapping 10-second segments of 
intracranial EEG (iEEG) data recorded using both depth 
electrodes in the brain and subdural electrodes over the cortical 
surface. Nonlinear features representing the specific 
characteristic properties of EEG signal were then integrated 
spatio-temporally in a way to predict to predict seizure with 
high sensitivity. The present system was tested on 58 hours of 
iEEG data containing ten seizures recorded in two patients 
with medically intractable focal epilepsy. Within a prediction 
horizon of 30 and 60 minutes, our method showed an average 
sensitivity of 90% and 96.5% with an average false prediction 
rate of 0.06/h and 0.055/h, respectively. The present results 
suggest that such a rule-based system can become potentially a 
useful approach for predicting seizures prior to onset. 

 
Index Terms—Focal epilepsy, intracranial EEG, nonlinear 

dynamics, seizure prediction. 

 

I. INTRODUCTION 

PILEPSY is characterized by spontaneous, recurrent, 
and intermittent paroxysmal electrical neuronal 

discharges in the brain that are manifested as seizures [1]. 
Predicting seizures would significantly improve 
considerably the quality of life of epileptic patients. 

To date, a great variety of linear and nonlinear techniques 
has been developed to identify preictal states and 
consequently to predict epileptic seizures [2]-[11]. 

In the present study, a patient-specific method is 
developed based on integrated univariate and bivariate 
measures and tested to predict partial seizures using 
intracranial EEG (iEEG) data. The aim of the method is to 
improve the performance of the seizure prediction by 
combining the predictability power of different measures. To 
achieve this goal, the information exploited by using 
univariate and bivariate measures from intracranial channels 
is spatio-temporally integrated by patient-specific rules 
established using a template seizure for each patient. 

 
A. Aarabi is with the Department of Biomedical Engineering, University 

of Minnesota, Minneapolis, MN 55455 USA (e-mail: aaarabi@umn.edu). 
B. He is with the Department of Biomedical Engineering, University of 

Minnesota, Minneapolis, MN 55455 USA (e-mail: binhe@umn.edu). 
 
 

 
II. METHODS 

 
A. Seizure prediction system 

The present seizure prediction system comprises three 
stages: preprocessing, feature extraction, and rule-based 
decision making (Fig. 1).  

 

 
Fig. 1. Schematic diagram of the present seizure prediction system 

 
 

1. Preprocessing 
In this stage, the iEEG data recorded with a sampling 

frequency of 256 Hz were first filtered using a band-pass 
filter with a 0.5-100 Hz pass-band and a 50 Hz notch filter. 
Then, the iEEG data were divided into non-overlapping 10-
second segments.  
 

2. Feature Extraction 

We extracted from each segment of the iEEG data a set of 
features including: Correlation Dimension (CD), Correlation 
Entropy (CEN), Noise Level (NL), Lempel-Ziv Complexity 
(LZC), Largest Lyapunov Exponent (LLE), and Nonlinear 
Interdependence (NI). To implement the nonlinear measures, 
τ (time lag) and m (embedding dimension) were estimated 
using the method described in [12] and [13]. The CD is 
considered as a measure of the dimensionality of the process 
being investigated. The CEN is also a dynamic measure, 
which represents the rate at which information needs to be 
created as the dynamical system evolves in time. We used 
the method proposed by Yu et al. [14] to estimate the CD 
and CEN, as well as the NL. As a measure of the level of 
randomness of patterns in the EEG time series, the LZC was 
extracted from iEEG segments using the algorithm described 
by Aboy et al. [15]. The LLE measures the divergence of 
state space trajectories, which were initially close to each 
other and determine the predictability of the system. We 
used the algorithm proposed by Rosenstein et al. [16], which 
is a reliable method for small data sets and robust in the 
presence of noise. Finally, we used the asymmetric NI 
introduced by Arnhold et al. [17] to compute the 
synchronization level between all possible combinations of 
electrode pairs.  
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A thresholding procedure was applied to the feature 
values extracted from the iEEG segments. For each separate 
patient, we first selected a seizure-free interictal period far 
from any seizures (see EEG data section). Then, for any 
given feature and channel, the feature values of the whole 
iEEG data were thresholded using the mean and standard 
deviation calculated over the feature values extracted from 
the iEEG segments within the reference window. 
 
3. Rule-based Decision Making 

The rule-based decision making stage includes the spatial 
combiner to integrate the spatial information exploited from 
the multichannel iEEG data, and the feature integrators to 
combine the information embedded in features in a way that 
optimizes the proportion of seizures predicted (Fig. 2). 

 
 

Fig. 2. Schematic diagram of the rule-based decision making stage 

For each patient, the first seizure was selected as a 
template. Then, feature values in the 50-min preictal period 
were compared to those separately obtained within the 
reference window for each feature and channel. If the 
median of the thresholded feature values in the preictal 
period was greater (or lower) than the value computed in the 
reference window, a label G (or L) was assigned to that 
feature and channel. For the same patient, this procedure was 
repeated for all features and channels. It should be 
mentioned that for each of the features, the labels for the 
epileptic and remote channels were collected in a vector 
termed Spatial Feature Pattern Vector (SFPV). This vector 
was considered as the spatio-temporal profile of the feature 
characterizing the preictal state of the patient. Therefore, for 
each patient there were six SFPVs for the univariate and 
bivariate features used in this study.  

Based on the SFPVs, the spatial combiner included the 
criteria for spatially combining the information embedded in 
features values extracted from the iEEG of different 
channels. The spatial combiner worked on a single feature-
multichannel basis. The spatial combiner was applied to 
each feature separately to identify multichannel seizure 
precursors (Fig. 2). 

 For a given feature and segment, if N (≥Nch) channels 
(out of 6 for the univariate measures and out of 15 for the 

bivariate measure) exhibited behaviors like those expected in 
the SFPV of the feature, then that segment was temporarily 
considered as a seizure precursor and a flag I was raised for 
the segment. The flag I was given a value by averaging the 
channels’ absolute feature values, which showed the 
behavior predicted in the SFPV of the feature. The location 
and value of all flag Is at this step were saved and fed into 
the feature integrators. There were six spatial combiners 
acting on the five univariate features and the bivariate 
feature (Fig. 2).  

Feature Integrator I & II 

Feature integrator I integrated decisions made for any 
segment in the previous step using the bivariate measures to 
locate seizure precursors. To this end, for any segment, if M 
(≥NF) flag Is (out of 5) whose values were higher than a 
significance threshold Tc1 were raised, then a flag II was 
raised for the segment. Following this, a value was assigned 
to the flag II by averaging the values of the flag Is 
contributing to the decision made for that segment. The flag 
IIs represented a higher probability of correct seizure 
prediction for the segment. All the flag IIs from the feature 
integrator I output were fed into the feature integrator II for a 
higher level decision. For any segment, if a flag II whose 
value exceeded a significance threshold Tc2 was raised, and 
if simultaneously a flag I was raised using the bivariate 
measure (Fig. 2), then a flag III representing a definite 
seizure precursor was raised for that segment.  

In the postprocessing step, any definite flag III not 
followed by at least three other consecutive flag IIIs was 
rejected as false short predictions representing precursors 
whose lengths did not exceed 40 seconds. All of the 
remaining flag IIIs were considered as true predictions.  

B. EEG data 

The iEEG data of two patients with medically intractable 
focal epilepsy were analyzed in this study to test the 
performance of the developed method. The data were 
selected from the Freiburg Seizure Prediction EEG 
(FSPEEG) database [18] with authorization, having been 
recorded by a Neurofile NT digital video-EEG system (IT-
Med, Usingen, Germany) with a 256 Hz sampling rate. In 
the database, the first two patients who met the following 
criteria were selected for analysis: 1) having maximum 
number of seizures; and 2) having seizures of frontal or 
temporal lobe origin. To record iEEG data, grid-, strip-, and 
depth-electrodes were used. For each patient, six contacts 
had been selected by visual inspection of iEEG data by an 
experienced epileptologist: three near the epileptic focus, 
and three in remote locations. No hyperventilation or 
photostimulation had been used to provoke seizures.  

In total, 58 h of iEEG data containing 10 seizures with at 
least 50 min pre-ictal data were analyzed. The onset and 
offset times of seizures had also been determined by the 
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epileptologist. Table I summarizes the details of the iEEG 
data used in this study.  

 
TABLE I 

CHARACTERISTICS OF THE INTRACRANIAL EEG DATA AND THE PATIENTS   

SP = simple partial, CP = complex partial, GTC = generalized tonic-clonic 
g: grid, s: strip, d: depth, HC: Hippocampal, NC: Neocortical 

 

For each patient, a reference window (4 h) was selected as 
a steady state baseline from the seizure-free interictal data to 
optimize the system. To construct the reference window, 
four one-hour interictal data segments were selected 
randomly from the whole 24-hour interictal data and 
concatenated. The remaining interictal data were used for 
evaluating the system performance.  

C. Data Processing  

The iEEG data of the patients were first band-pass filtered 
and segmented. Then, all aforementioned features were 
extracted from iEEG segments and thresholded using the 
method described in the feature extraction section. Finally, 
the resultant features were integrated by the rule-based 
decision making stage. All produced flag IIIs were used for 
the evaluation of the system’s performance.  

D. System Optimization and Evaluation 

The performance of the seizure prediction system was 
assessed using seizure-free interictal EEG data, which were 
completely independent from those used for optimizing the 
system parameters, in terms of sensitivity, specificity, false 
prediction rate, minimum prediction time, and portion of 
time under false predictions as a function of prediction 
horizon (in this study, 30 or 60 min) [10]. The optimal 
values of the thresholds, Nch, NF, Tc1 and Tc2, were 
determined using a trial-and-error method, in which each 
patient’s thresholds were changed one by one and the 
sensitivity and false prediction rate were computed using the 
flag IIIs produced by the system for the reference window 
and the preictal data of the template seizure. This procedure 
was repeated in a way to obtain maximum sensitivity and 
specificity. The optimal parameters found at this step were 
used to assess the system’s performance. 

To evaluate the dependence of the system’s performance 
on reference window, a procedure was run 10 times for each 
patient and at each run a reference window was randomly 
selected with the method explained in the EEG data section 
and the system performance was evaluated on the reference 
window. Then, for each patient, the overall system 
performance was computed by averaging the system 
performance obtained using the ten different reference 
windows.  

III. RESULTS 

In the two patients used for evaluation, the results showed 
an average sensitivity of 90% and 96.5% with an average 
false prediction rate of 0.06/h and 0.055/h, within respective 
prediction horizons of 30 and 60 min.  

A. Overall System Performance  

The performance of the system as a function of the 
prediction horizon for each patient is listed in Table II. For 
each patient, the total, average system performance was 
computed by averaging the system performance obtained 
using the ten reference windows randomly selected for each 
patient.  

TABLE II 
SYSTEM PERFORMANCE AS A FUNCTION OF PREDICTION HORIZON 

Patient Prediction 
horizon 
(min) 

Sensitivity 
(%) 

 

Specificity 
(%) 

False 
prediction 

rate 
(/h) 

Portion of time 
under false 
predictions 

(h) 

Minimum 
prediction 

time 
(min) 

1 30 80 ± 8 98.8±0.6 0.12±0.04 0.33±0.25 2.9±0.8
60 93 ± 7 0.11±0.03 3.1±0.5

2 30 100 ± 0 100±0 0 ± 0 0 ± 0 11.4±0.1
60 100 ± 0 0 ± 0 40.9±2

Average 30 90 ± 10 99.4±0.6 0.06±0.06 0.165±0.21 7.2±4.3
60 96.5 ± 5.3 0.055±0.055 22.2±18.9
Results are expressed as mean ± absolute deviation. 

 

As can be seen from the deviation of the performance 
parameters, the system is relatively insensitive to the choice 
of reference windows. Only slight changes were observed in 
the system performance obtained for patient 1. No 
performance changes were found in patient 2.  

Relatively lower sensitivities and higher false prediction 
rates were observed in patient 1 with the prediction horizon 
of 30 min. Even using optimally-tuned thresholds, the 
system failed to identify one seizure using the prediction 
horizon of 30 min in this patient. For both patients, on 
average a specificity of 99.4% was observed.  

B. Feature significance evaluation  
To compare the predictability power of the features 

separately, we compared the performance of the system 
based on single features. For this purpose, our system was 
tuned up and its performance was evaluated using only one 
feature at a time and the first randomly selected reference 
window (the feature integrator was deactivated for this step). 
Table III compares the performance of the system using 
single or multiple features as a function of the prediction 
horizon. As shown, the contribution of single features in 
performance improvement is largely disparate, but the entire 
system based on combined features shows a better 
performance for both prediction horizons. As shown, among 
the single-feature based systems, those utilizing the CEN 
and LZC features obtained relatively lower sensitivities and 
false prediction rates with higher specificities. 

 
 
 

Patient Seizure type HC/NC Origin Electrodes No. of 
seizures 

interictal EEG 
duration (h) 

1 SP,CP NC Frontal g,s 5 24 
2 SP,CP,GTC HC Temporal d,g,s 5 24 
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TABLE III 
AVERAGE PERFORMANCE PARAMETERS OF THE SINGLE-FEATURE BASED 

SYSTEM AND THE ENTIRE SYSTEM ACROSS PATIENTS 
Prediction 

horizon 
(min) 

System  Sensitivity 
(%) 

Specificity 
(%) 

False 
prediction 

rate 
(/h) 

Portion of 
time under 

false 
predictions 

(h) 

Minimum 
prediction 

time 
(min) 

30 CD-based 87.5 98.9 0.15 0.2 23.4
NL-based 87.5 99 0.08 0.2 8.9

CEN-based 62.5 99.6 0.05 0.08 14.3
LZC-based 62.5 99.7 0.03 0.06 36.5
LLE-based 87.5 97.8 0.13 0.45 16.7
NI-based 100 98 0.22 0.42 7.3

Entire 
system 

90 99.4 0.06 0.165 7.2

60 CD-based 100 98.9 0.1 0.2 52.5
NL-based 100 99 0.05 0.2 27.5

CEN-based 87 99.6 0.05 0.08 14.3
LZC-based 75 99.7 0.03 0.06 49.1
LLE-based 100 97.8 0.1 0.45 28.1
NI-based 100 98 0.2 0.42 21.8

Entire 
system 

96.5 99.4 0.055 0.165 22.2

 

In summary, in the present study we have developed a 
rule-based seizure prediction method that includes first, 
extracting univariate and bivariate nonlinear dynamical 
features from iEEG segments, and then, spatio-temporally 
integrating the dynamic characteristics using the patient-
specific rules established based on the dynamic behavior of 
the nonlinear measures in the preictal state of the template 
seizure. The method was tested for seizure prediction and 
preictal characterization in two patients with medically 
intractable focal epilepsy. From a clinical perspective, the 
system achieved promising results, including an average 
sensitivity of 96.5% with a false prediction rate of 0.055/h 
within a prediction horizon of 60 min.  

In a comparative study, Maiwald et al. [18] compared the 
performance of the dynamic similarity index, the 
accumulated energy, and the effective CD. With a false 
prediction rate of less than 0.15/h and a prediction horizon of 
up to 30 min, these features achieved sensitivity ranges of 
21-42%, 18-31% and 13-30%, respectively. With a 
prediction horizon of 30 min, our system achieved an 
average sensitivity of 90%. With a maximum false 
prediction rate of 0.15/h and a prediction horizon of 60 min, 
the sensitivity increased to 96.5%. While promising, our 
system has only been tested on the intracranial EEG of two 
patients, thus requires further evaluation using a larger group 
of patients. 
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