
 

 

 

  

Abstract—Monitoring the depth of anesthesia (DOA) is 

necessary in order to decrease the incident of awareness in 

anesthesia and to prevent delays in the recovery phase. In the 

last decades a number of noninvasive methods have been 

proposed for the analysis of the electroencephalogram (EEG) 

for monitoring DOA. The objective of this work was to apply 

auto mutual information function (AMIF) to EEGs of patients 

under anesthesia in order to find variables able to 

characterize the following 4 states: awake, sedated, 

anesthetized and burst suppression episodes. The results show 

that the single and combined AMIF parameters were able to 

correctly classify the states in the range 72.2% – 94.1% and 

61.1% – 100%, respectively. 

 

I. INTRODUCTION 

NESTHESIA is defined as the state of 

unconsciousness, amnesia and hemodynamic, motor, 

and endocrinologic stability during surgery, produced 

by specific medication. This means that for achieving an 

adequate level of depth of anesthesia (DOA), usually a 

combination of hypnotic, analgesics, and neuromuscular 

blocking agents are used [1]. The relationship between 

drugs and desired responses of DOA is not a simple one-to-

one connection, but it seems to present features of 

complexity and nonlinear behavior [1]. 

Anesthetic drugs influence both the frequency content 

and the amplitude of the electroencephalographic (EEG) 

signal. Therefore, the study of the Central Nervous System, 

the main target for anesthetic agents, has received a great 

deal of attention and EEG based methods have been widely 

used for estimating the DOA [2]. 

The EEGs during anesthesia exhibit characteristic 

changes when anesthetic depth increases. These changes 

                                                           
Manuscript received March 16, 2011. This work was supported within the 
framework of the CICYT grant TEC2010-20886 from the Spanish 

Government and the Research Fellowship Grant FPU AP2009-0858 from 

the Spanish Government. B. Julitta, U.S. P. Melia, M. Vallverdú and P. 

Caminal are with Dept. ESAII, Centre for Biomedical Engineering 

Research, Universitat Politècnica de Catalunya, CIBER of Bioengineering, 

Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; email: 
{barbara.julitta, montserrat.vallverdu, umberto.melia, pere.caminal 

}@upc.edu. N. Tupaika, M. Jospin and E. W. Jensen are with Aircraft 

Medical, Barcelona, Spain; email: {nt, mj, ewj}@aircraftmedical.com. 

M.M.R.F. Struys is with the Department of Anesthesiology, University 

Medical Center and University of Groningen, Groningen, The Netherlands 

and with the Department of Anesthesia, Gent University, Gent, Belgium; 
email: m.m.r.f.struys@anest.umcg.nl. H.E.M. Vereecke is with the 

Department of Anesthesiology, University Medical Center and University 

of Groningen, Groningen, The Netherlands; email: 

h.e.m.vereecke@anest.umcg.nl. 

include complex patterns of frequency slowing 

accompanied by amplitude increases. As DOA increases 

from light anesthesia to deep anesthesia, the EEG exhibits 

rhythmic waveforms, burst suppression pattern activity, and 

finally, very low amplitude isoelectric or flat-line activity 

[3-4]. 

Various signal analysis approaches have been used to 

quantify these pattern changes and provide an indication of 

loss of recall, loss of consciousness and anesthetic depth as 

in [5-6]. The most common technique in clinical practice is 

the bispectral index analysis of the EEG (BIS) [7] while 

other available devices are the IoC-view, applying symbolic 

dynamics [8], or the Auditory Evoked Potentials (AEP) 

index, AAI [9]. 

In this work, four different states of DOA of patients 

undergoing surgery were taken into account. There is no 

gold standard to measure the DOA, so indirect parameters 

were used to validate the results. In this analysis, the signal 

containing burst suppression (BS) was also considered. BS 

is a characteristic behavior of the EEG that appears in the 

deepest state of anesthesia. It is recognized by a pattern of 

low voltage, less than 10 µV, and a relatively shorter 

pattern of higher amplitude complexes.  

In the present work, an analysis based on techniques of 

auto-mutual information function (AMIF) of EEGs was 

performed in order to find which variables can better 

discriminate between the four states: awake (Awk), sedated 

(Sdt), lightly anesthetized (Ansth) and deeply anesthetized 

(BS).  

II.  MATERIALS AND METHODOLOGY 

A. EEG Data and Preprocessing 

After informed consent for all patients and approval from 

the Institutional Ethics Committee, the EEG from 19 

women, 18 to 60 years old, scheduled for ambulatory 

gynecological surgery in the Ghent University Hospital, 

Belgium, was recorded. For this study, one of the subset of 

the raw EEG waves from a previously published study [8] 

was post-processed. All patients received continuous 

infusion of propofol fixed at 300 ml/h by a computer-

assisted infusion device (RUGLOOP). The DOA was 

measure by AAI, auditory evoked potential index, [10] 

calculated using the A-Line monitor (Danmeter A/S, 

Odense Denmark). Three electrodes were positioned: one at 

the mid forehead (+), one at the left forehead (reference) 

and one at the left mastoid (-). The difference between (+) 

and (-) was taken into account for this study. All 
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hemodynamic data together with the AAI index were 

logged automatically every 10 s. The A-Line monitor 

provided a measure of the burst suppression ratio (BS), 

which represents the fraction of time where the EEG has 

small amplitudes. Database contains also information about 

AAI, assumed to define states of DOA in the present study, 

and CePropo, the concentration of the Propofol in the 

patient’s brain. The AAI defines the following states [2]: 

Awk, when AAI index is higher than 60; Ansth, when AAI 

index is lower than 30; Sdt, when AAI index is between 30 

and 60.  
The EEG was recorded with a sampling frequency of 900 

Hz, with a resolution of 16 bits and a recording time of 

about 15 min. A Butterworth filter of 5th order was applied 

to the EEGs, with a cut-off frequency of 45Hz in order to 

reduce the influences of the EMG and the external noise. In 

each state, EEG signals were segmented in windows of 1 s 

and 10 s. Figure 1 contains windows of 6 s of unfiltered 

EEG for each state of DOA of a patient. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 1. Windows of 6 s of unfiltered EEG for each state of DOA of a 

patient: (a) Awk; (b) Sdt; (c) Ansth; (d) BS. 
 

B. Auto Mutual Information function 

Mutual information (MI) can measure the nonlinear as 

well as linear dependence of two variables. It is a metric 

derived from Shannon’s information theory to estimate the 

information gained from observations of one random event 

on another [11], and measuring both linear and nonlinear 

dependences between two time series [12]. It can be 

regarded as a nonlinear equivalent of the correlation 

function. Usually, MI is measured between two different 

systems X and Y. AMIF on the other hand is calculated 

between two measurements taken from a single time series 

x(t). AMIF estimates the degree to which a delayed series 

x(t+τ) can be predicted from x(t). 

Let X  be a discrete random variable which takes a finite 

number of possible values  x1, x2 ,x3..., xn with probabilities 

P(x1), P(x2), P(x3)..., P(xn) respectively, such that P(xi)≥0, i 

= 1, 2, 3…n. AMIF can be defined as the MI between 

random variables Xi and Xi+τ. 
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This function describes how the information of a signal 

(AMIF value at τ=0) decreases over a prediction time 

intervals (AMIF values at τ>0). In the case of a completely 

regular (deterministic) signal, the AMIF would remain at 

the maximum value of τ=0 for all τ. In the case of an 

uncorrelated random signal, the AMIF would become zero 

for all τ>0. Increasing information loss is related to 

decreasing predictability, and increasing complexity of the 

signal. In this work, AMIF was calculated using a discrete 

time delay 0≤τi≤100 samples. In order to characterize DOA, 

cumulative area (CumAreaτi), partial area (PartAreaτi) and 

peak decay (PDecayτi) were defined from AMIF: 
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The mean value of each variable calculated in all 

windows along the state was considered for the analysis. 

For each variable, the number of states correctly classified 

for all patients was studied in order to find the value of τi 

that allows a better classification. 

C. Statistical Analysis 

A nonparametric test was applied by using U of Mann-

Whitney test and a significance level p-value <0.05 was 

taken into account. Variables that satisfy this condition 

were taken into account for building a quadratic 

discriminant function able to classify adjacent state of 

DOA. The leaving-one-out cross-validation method was 

performed. Cross-validation involves partitioning a sample 

of data into complementary subsets, performing the 

analysis on one subset (the training set), and validating the 

analysis on the other subset (the validation set). To reduce 

variability, multiple rounds of cross-validation were 

performed using different partitions, and the validation 

results are averaged over the rounds.  

The ability of the variables to describe DOA was 

evaluated using prediction probability (Pk), which compares 

the performance of indicators having different units of 

measurements [13]. The Pk coefficient is a statistic 

commonly used to measure how well an index predicts the 

state of the patient. A Pk of 1 represents a perfect prediction 

and 0.5 is not better than tossing a fair coin. In this way, the 

Pk is a performance which indicates the correlation between 
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DOA indicator value and observed anesthetic depth, taking 

into account both desired performance and the limitations 

of the data. The Pk avoids the shortcomings of other 

measures. For example, as a nonparametric measure, Pk is 

independent of scale units and does not require knowledge 

of underlying distributions.  

In the present work, the Pk was computed for the 3 

variables that provided the best classification in terms of 

the discriminant analysis, using the previously defined 

states of DOA and the concentration of the drug CePropo as 

references of the actual state of the patient. In order to 

assess the performance of the proposed variables, the Pk of 

CePropo is also computed when the DOA states are used as 

reference. Similarly, when CePropo is the reference 

considered, the Pk of the proposed variables is compared 

with the Pk of the AAI. 

III. RESULTS 

Variables that allow the best classification of the 

segments in their correct states were found out to be the 

CumArea10, PartArea2, PDecay5. Tables I and II show the 

mean value and standard error of those variables for 

windows of 1 s and 10 s, respectively. The p-values of each 

variable comparing adjacent states of DOA are contained in 

Table III and IV. 
 

TABLE I 

VALUES OF VARIABLES: ONE-SECOND SEGMENT 

Variable Awk 

mean (SE)  

Sdt 

mean (SE) 

Ansth 

mean (SE) 

BS 

mean (SE) 

CumArea10 12.1 (0.043) 16.2 (0.052) 18.1 (0.033) 15.5 (0.043) 

PartArea2 1.61 (0.004) 2.01 (0.004) 2.17 (0.002) 1.93 (0.004) 

PDecay5 1.98 (0.005) 1.47 (0.006) 1.25 (0.003) 1.56 (0.005) 

SE, standard error 
 

TABLE II 

VALUES OF VARIABLES: TEN-SECOND SEGMENT 

Variable Awk 

mean (SE) 

Sdt 

mean (SE) 

Ansth 

mean (SE) 

BS 

mean (SE) 

CumArea10 12.1 (0.045) 16.6 (0.059) 18.6 (0.032) 16.1 (0.041) 
PartArea2 1.65 (0.004) 2.06 (0.005) 2.12 (0.013) 2.01 (0.004) 

PDecay5 1.96 (0.005) 1.42 (0.007) 1.17 (0.003) 1.48 (0.005) 

SE, standard error 
 

TABLE III 

STATISTICAL SIGNIFICANT LEVEL: ONE-SECOND SEGMENT 

p-value Awk vs.Sdt Sdt vs.Ansth Ansth vs.BS 

CumArea10 <0.0005 <0.0005 <0.0005 

PartArea2 <0.0005 0.001 <0.0005 
PDecay5 <0.0005 0.002 <0.0005 

 

TABLE IV 

STATISTICAL SIGNIFICANT LEVEL: TEN-SECOND SEGMENT 

p-value Awk vs.Sdt Sdt vs.Ansth Ansth vs.BS 

CumArea10 <0.0005 0.01 <0.0005 

PartArea2 <0.0005 0.015 <0.0005 

PDecay5 <0.0005 0.006 <0.0005 

 

Analyzing Tables I and II some information about the 

complexity of the signal can be extracted. In fact, for lower 

values of CumArea10 and PartArea2, the AMIF presents 

higher decay (PDecay5) and thus the signal presents higher 

complexity [14]. It can be noticed that: 

 
PDecay5(Awk)> PDecay5(BS)> PDecay5(Sdt)> PDecay5(Ansth) 

 
CumArea10 (Awk)< CumArea10 (BS)< CumArea10 (Sdt)<CumArea10(Ansth) 

 
PartArea2(Awk)<PartArea2(BS)<PartArea2(Sdt)<PartArea2(Ansth) 

 

That denotes a major complexity of the EEG if the 

patient is awake and a major regularity if the patient is in 

anesthetized state. The EEG loses its complexity when it 

goes from awake to sedated and sedated to anesthetized 

states. Instead, during burst suppression state the signal 

complexity increases to values almost similar to sedated 

state. This can be due to the patterns of higher amplitude, in 

the EEG, that characterize the burst suppression state. 

Considering the discriminant analysis, windows of 1 s 

gave better results than windows of 10 s, since this length 

of segment was not able to characterize all DOA states. 

Table V shows percentages of well classified one-second 

segments calculated by applying the discriminant function 

using CumArea10, PartArea2, PDecay5 considering adjacent 

states of DOA.  
 

TABLE V 

% OF WELL CLASSIFIED SEGMENTS: ONE-SECOND SEGMENT 

 Awk(%) 

Sdt(%) 

Sdt(%) 

Ansth(%) 

Ansth(%) 

BS(%) 

CumArea10 88.9  % 

88.9  % 

72.2  % 

76.5  % 

82.4  % 

77.8  % 

PartArea2 88.9  % 

88.9  % 

72.2  %  

76.5  % 

94.1  % 

77.8   % 

PDecay5 88.9  % 

88.9  % 

72.2  %  

76.5  % 

82.4  % 

77.8  % 

 

Table VI presents the Pk values and the standard errors 

(SE) achieved for CumArea10, PartArea2, PDecay5, AAI 

and CePropo when using the DOA states and CePropo as 

references, respectively. For this analysis, the burst-

suppression state has been discarded due to the different 

trend shown by the proposed variables in that state. The 

cells of the table for which the Pk value would be 1 due to 

the direct relationship between variable studied and 

reference have been left blank. The three proposed indexes 

achieve a Pk value of 0.79 when the DOA states are used as 

references. This implies a rather good correlation with the 

DOA states, even if it is lower than the value of Pk= 

0.91(SE=0.01) of CePropo. When CePropo is the reference, 

the Pk value for the proposed variables decreases, Pk = 

0.71(SE=0.01) and it is below the value achieved for the 

AAI, Pk = 0.85(SE=0.01). 
 

TABLE VI 

PREDICTION PROBABILITY: ONE-SECOND SEGMENTS 

Reference CumArea10 

Pk (SE) 
PartArea2 

Pk (SE) 
PDecay5 

Pk (SE) 
 AAI 
 Pk (SE) 

CePropo 
Pk (SE) 

State 0.79 (0.01)  0.79 (0.01) 0.79 (0.01)  0.91 (0.01) 

CePropo 0.71 (0.01) 0.71 (0.01) 0.71 (0.01) 0.85(0.01)  

Pk (SE): Pk prediction probability; SE, standard error 
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Higher percentages of well classified one-second 

segments were obtained combining two AMIF variables. 

By adding more variables to the discriminant function it 

was not possible to increase the percentages of well 

classified segments. In Table VII, it is shown the best 

combinations of variables that give quite high percentages 

of well classified one-second segment for all the adjacent 

states. 

 
TABLE VII 

% OF WELL CLASSIFIED SEGMENTS: ONE-SECOND SEGMENT 

Variable Awk(%) 

Sdt(%) 

Sdt(%) 

Ansth(%) 

Ansth(%) 

BS(%) 

PDecay5+CumArea10 88.9  % 

100  % 

61.1  % 

94.1  % 

94.1% 

77.8% 

PartArea2+PartArea5 88.9  % 

94.4  % 

72.2  % 

82.4  % 

82.4% 

77.8% 

PartArea2+CumArea10 88.9  % 

100  % 

66.7  % 

82.4  % 

82.4 % 

77.8% 

 

IV. CONCLUSIONS 

Auto-mutual information function (AMIF) was applied 

to one-second and ten-second windows of EEG recorded 

during surgery in order to characterize the depth of 

anesthesia (DOA). Several variables were defined from the 

AMIF in order to explore the complexity involved in DOA 

process. It was found that EEG signal presents a decreasing 

level of complexity from awake to anesthetized state. The 

regularity is lost when the burst suppression episode 

appears.  

The results show that the single and combined AMIF 

parameters were able to correctly classify the states up to 

94.1% and up to 100%, respectively. Globally, the best 

percentages were obtained combining two AMIF variables 

and using segments of the EEG of 1 s. Performance would 

increase whether each state were characterized by a 

particular variable, although in this work each selected 

variables were able to describe all DOA states.  

The AMIF seems to be a good method of classifying 

different conditions of the patient under anesthesia. 

However, this work represents a preliminary study about 

the advantages taken from the application of mutual 

information function on the discrimination between 

adjacent states of DOA. Additional tests will be made in 

order to validate the results using more data taken from 

other patients. Other studies have been developed [5, 6, 15] 

using the same database but with different algorithms for 

DOA characterization. It could be noticed that combining 

two variables of AMIF quite comparable percentages of 

well classification of DOA states are achieved. A future 

study would be combining the best variables obtained from 

the different proposed algorithms, in order to improve the 

results for a future online implementation.  
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