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Abstract— Atrial fibrillation (AF) is a progressive arrhythmia
which causes time dependent impairing of the cardiac muscle.
This makes that proper therapeutic interventions depend on
the degree of AF progression, i.e., on the temporal decrease
of the organization of the electrical patterns observed during
AF. Standard effective treatments are still lacking nowadays,
and this calls for suitable noninvasive analysis of AF. In this
sense, an appropriate therapy relies on the knowledge of AF
characteristics, as its degree of organization. To this purpose,
fast and accurate imaging of cardiac electrical activity can be
helpful. Relying on the results of previous work on noninvasive
assessment of the complexity of AF, we put forward a method
to obtain visual maps of the topographic projection of the main
atrial activity (AA) component given by principal component
analysis, which is shown to provide detailed information about
AA potential pattern distributions on the body surface. Differ-
ent AA potential pattern distributions can then be identified,
depending on the underlying degree of AF organization. An
automated way to assess AF organization degree is then
proposed, based on topographic projections. Similarities with
previous studies suggest its usefulness for determining uniform
distributions in the activation patterns on the body surface.

I. INTRODUCTION

Atrial fibrillation (AF) severity increases with time and

so does the consequent impairment of the cardiac function,

causing several electro-structural changes in the myocardium

which may lead to serious complications. AF progression

is the reason why a widely accepted successful treatment

strategy for this pathology is still lacking nowadays. Thus,

in relation to the duration of its episodes, AF is differently

treated [1]. Moreover, inconsistent success rates of different

therapies underline that AF treatment is challenging, when

it comes to avoiding unnecessary and risky procedures.

A proper noninvasive diagnosis would make AF treatment

more effective in selecting good candidates for a certain

procedure. An appropriate therapy relies on the knowledge of

AF characteristics, as its degree of organization, a marker of

AF progression. To this purpose, fast and accurate imaging

of cardiac electrical activity could be helpful to provide
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detailed information about the exact electrical functioning

of the heart, which is essential for a correct diagnosis.

A detailed information on AF organization can be obtained

by intravenous approaches, but such an invasive approach

is nowadays considered too drastic for diagnostic purposes.

Hence, more recent works have attempted a noninvasive

evaluation of AF organization through body surface potential

maps (BSPM) [2], which have the advantage over the con-

ventional ECG of a much higher spatial resolution. Guillem

et al. [3] have demonstrated the possibility of visually eval-

uating different activation patterns in AF patients. Moreover,

we have recently shown that the spatio-temporal organization

in the AA during AF can be noninvasively and quantitatively

evaluated from BSPM recordings [4]. This has been carried

out looking at the reflection on the surface ECG of the spatio-

temporal complexity of the recorded atrial activity (AA)

in the BSPM recording, by means of principal component

analysis (PCA). Complexity is meant as the amount of

disorganization observed on the ECG, and is supposed to

be directly correlated to the number and interactions of si-

multaneous atrial wavefronts. However, BSPMs suffer of the

smoothing effect of the torso volume conductor which smears

the body surface distribution of the potentials, and thus it is

still limited by a low spatial resolution to resolve and localize

multiple simultaneous active myocardial electrical events.

In this paper, we introduce a way to partially overcome

this problem. The spatial topography related to the most

important component given by the PCA of the AA in the

BSPM recording is retained and its topographic projection

on the ensemble of electrodes is obtained. This is justified

by the fact that the global perspective on the underlying AA

given by surface ECG recordings can be supposed to mainly

reflect the behavior of the atrial areas characterized by an AF

type similar to the predominant one observed on the body

surface. A visual inspection of the obtained maps suggests

the presence of differences among the analyzed patients.

These differences turn out to be correlated to the level of AF

organization of each patient, as previously identified in [4].

Hence, this visual representation allowed us to focus on

discriminating among patients in terms of their organization

in time and space, unlike in [4] where the discrimination

was based on the reconstruction error of the projections of

the different AA segments over a reference segment. The to-

pographic projections associated with organized AF seem to

show uniform distribution in their maps, while disorganized
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Fig. 1. (a) Arrangement of the electrodes and belt used for their attachment
to the patient. Electrode positions are represented as open circles while V1
and V1post are denoted by black and grey circles, respectively. Electrodes
were placed around V1 and V1post as a uniform grid. (b) Definition of
the different cardiac waves and intervals of interest. At the top, example of
normal sinus rhythm ECG recording (NSR), showing the different cardiac
waves. At the bottom, example of ECG recording during AF, showing a TQ
interval (off:offset; on:onset).

AF patients do not show any particular trend. Thus, after a

suitable transformation, these differences can be exploited

to distinguish among organized and disorganized AF. An

automated way to achieve this classification is then proposed,

which provides comparable results as those obtained in [4].

II. METHODS

A. Data and acquisition system

The same dataset composed of 14 patients as the one

introduced in [4] was employed in this study (10 males, 4

females; age 68±14 years; AF duration 12±18 months). One

BSPM signal was recorded for each patient. All recordings

presented persistent AF. The acquisition system consisted

of a total of 56 leads (anterior: 40, posterior: 16) acquired

simultaneously for each subject, as shown in Fig. 1(a).

Signals were acquired at a sampling frequency of 2048 Hz

and preprocessed by applying a third-order zero-phase

band-pass Chebyshev filter with frequency band between

[0.5, 100] Hz, to remove baseline wandering and high fre-

quency noise.

B. Atrial activity description through principal component

analysis and topographic projections

As in [4], only TQ segments in the BSPM recording

were analyzed, where no ventricular activity is present. Each

recording was split in 6 consecutive 10s-length intervals, and

an AA signal was obtained for each interval concatenating

only the TQ segments inside it (see Fig. 1(b) for the

definition of the different cardiac waves and intervals). Thus,

each lead l in the sth AA recording (with s = 1, . . . , 6) is

represented by a row vector:

y
(s)
l = [y

(s)
l (1), . . . , y

(s)
l (N)] (1)

where N is the number of samples inside the interval. Then,

the entire ensemble of leads is compactly represented by the

56×N matrix:

Y(s) =









y
(s)
1
...

y
(s)
56









The interested reader is referred to [4] for further details

about the procedure to generate Y(s).

One manner to analyze the information about AA inside

matrix Y(s) is to transform it in a set of components

by minimizing the redundancy among them. This can be

achieved by PCA. Indeed, spatial uncorrelation provided by

PCA involves a linear transformation of the mean corrected

observed signals Y(s) ∈ R
n×N (n = 56, in this study),

which produces a set of mutually uncorrelated waveforms

with unit variance X(s) ∈ Rm×N with (m ≤ n), so that:

Y(s) = M(s)X(s) (2)

where X(s) =









x
(s)
1
...

x
(s)
m









is an estimate of the true vector of

the unknown components, and M(s) = (n×m) is the transfer

matrix. In this model, the transfer matrix accounts for both

the volume conductor properties and the solid angle under

which the single component contributes to the potential on

each lead. Thus, the ith column of M(s) represents the spatial

topography (ST) that links the ith component of X(s) with

the observed signals Y(s). The spatio-temporal stationarity

of the AA potential field is to be reflected in the coefficients

stored in each ST. Thus, the ST M
(s)
1:n,1 associated with the

first principal component (PC) x
(s)
1 is the one best reflecting

the main distribution of the AA potential field on the body

surface. Its entries provide information about the relative

contribution of the first PC to the potential of each electrode,

and on which electrodes that PC is mainly reflected. The

relative locations of these electrodes may inform us on the

presence of uniform distributions of the activation patterns.

For this purpose, a topographic projection of the weights

stored in the first ST is obtained so as to produce a visual map

of the importance of each electrode in observing the first PC.

Weights’ values are linearly reassigned by a suitable color

coding, as defined below, so that the higher the weight stored

in the ST the lighter the color associated with the correspond-

ing electrode (the more tends to red). Conversely, the lower

the weight the darker the associated color (the more tends

to dark blue). Extremely noisy leads have been discarded

and appear as white electrodes. The reassignment is carried

out as follows. Firstly, a color map matrix H = (M × 3)
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is obtained (e.g., using colormap function in MatLab, with

default setting JET, and a coding based on M = 64 colors),

organized so that the first rows describe darkest colors, while

the last rows describe lightest colors. Then, for each AA

segment, a linear mapping is produced so as to assign each

weight in the first topography M
(s)
1:n,1 to a specific color (a

row in matrix H). This is carried out by means of a linear

model as

l(s) = a(s)M
(s)
1:n,1 + b(s) (3)

where parameter a is set so that

a(s) =
M − 1

max(M(s))−min(M(s))
(4)

and b(s) derived, e.g., as

b(s) = 1− a(s) min(M(s)) (5)

Vector l(s) is thus the vector of reassigned positions (rows)

in H. Thus, electrodes are colored so as to be scaled with

respect to the value of the corresponding coefficient in the

projected ST.

C. Automated analysis of uniform distributions and AA po-

tential pattern organization

After obtaining the topographic projection of M
(s)
1:n,1,

as in the previous section, the corresponding vector l(s)

of reassigned positions was clustered into two bins. This

was conducted in MatLab environment exploiting function

histc, with an optimal step equals 40, which provided the

highest similarities with [4]. This analysis was separately

carried out for the 40 electrodes in the front and the 16

in the back. Thus, the first bin, corresponding to lower

rows in matrix H, describes mainly dark colors, that is,

less significant weights in M
(s)
1:n,1, while the second mainly

describes light colors, that is, more significant weights in

M
(s)
1:n,1. Hence, the number of reassigned positions falling

in each bin was considered, providing an information on the

mean trend of each AA segment (either predominance of

dark or light colors, or resemblance). The degree of the AF

potential pattern organization was then analyzed in terms of

similarities (uniform distributions) in the clustering over the

different segments on the same patient. Due to physiological

considerations (see Section IV), this analysis was mainly

based on back electrodes, while front electrodes were used

to solve indeterminacies. Finally, the linear reassignment

presented in the previous section is a transformation which

allows a normalization of the STs, so as to perform auto-

mated analysis of their distributions.

III. RESULTS

A. Visual inspection of the topographic projections

Topographic projections of the first PC of each of the 6 AA

segments on the ensemble of electrodes produce visual maps

as those shown in Figs. 2(a)-2(c). Investigating the different

projections for the 14 patients in the dataset, interesting re-

marks appear. When focusing on the topographic projections

obtained for the electrodes on the back, three different kind

of distributions along the 6 segments seem to be present:

unimodal, bimodal, multimodal:

1) unimodal: all back electrodes show uniform intensity

(almost same color) over a certain segment; this uni-

modal distribution is kept over all segments for a

certain patient. An example is depicted in Fig. 2(a);

2) bimodal: all back electrodes show two main intensities

(two different colors) over a certain segment; this

bimodal distribution is kept over all segments for a

certain patient. An example is depicted in Fig. 2(b);

3) multimodal: absence of any recursive structure of the

back electrode intensities over all segments. An exam-

ple is depicted in Fig. 2(c).

B. Automated analysis of uniform distributions in the topo-

graphic projections

As introduced in Section II-C, the number of reassigned

positions in each bin over the different segments was ex-

ploited to estimate the level of AF organization in a certain

patient, as follows: a patient showed a unimodal distribution

if over all the segments all the back electrodes were clustered

in one bin. Conversely, if the number of elements in each bin

was equal, or equal but one, the patient was said to present

a bimodal distribution. In both cases the patient was said

to present an organized AF. Otherwise, in every other case

the patient was said to present a multimodal distribution,

and so characterized by a disorganized AF. We obtained

strong similarities with the spatio-temporal identification

previously found in [4], with 12 out of 14 patients labeled

in the same way by both methodologies (6 patients showed

organized AF, and 8 patients showed disorganized AF). If

information from front leads was also properly included

in the analysis, correlation between the two methodologies

improved. Indeed, exploiting the reassigned positions on

front leads in order to estimate the dispersion of the signal on

the chest, 14 out of 14 patients have been labeled in the same

way by both methodologies (8 patients showed organized AF,

and 6 patients showed disorganized AF). In order to do that,

we considered as organized AF patients those who, besides

showing a back unimodal distribution, presented all anterior

position mainly classified in the same bin over all segments.

IV. DISCUSSION AND CONCLUSIONS

An effective treatment of AF asks for proper noninvasive

analysis of the AF temporal progression in terms of AF de-

gree of organization. To this extent, fast and accurate imaging

of cardiac electrical activity is demanded. Thanks to their

high spatial resolution, BSPM recordings can be exploited

to partly solve this problem. This work proposed a method

to obtain a spatial representation of the main AA component

given by PCA, which after a suitable normalization provided

a detailed information about AA potential pattern distribu-

tions on the body surface. Particularly, three main structures

have been identified. Unimodal and bimodal distributions,

which present a relative recursive structure, that can be

interpreted as uniform distributions in the main activation

patterns on the body surface. Patients showing these kind of
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Fig. 2. Visual projection of the weights stored in the first spatial topography
derived from segments 1 to 6, respectively, of patient 2 (a), patient 9 (b),
and patient 13 (c), on the associated surface electrodes.

behaviors generally corresponded to those identified in [4] as

characterized by an organized AF. Conversely, multimodal

distributions do not show any particular recursive structure,

underlining a more disorganized distribution in the wavefront

propagation inside the atria, as reflected on the body surface.

Patients showing this kind of behavior corresponded to those

identified in [4] as characterized by a disorganized AF.

Moreover, in [4] we exploited the reconstruction error of the

projections of the different AA segments over a reference

segment to achieve AF organization estimation, focusing

on lead V1 only. However, we did not represent data in

space, while this representation at the present time allowed

us to focus on discriminating among patients in terms of

their organization in time and space, by looking at the maps

generated by the projection of the first ST. These preliminary

results may pave the way for a possible estimation of more

detailed information about simultaneous activations (AA

vector direction and activation areas’ locations), especially

for patients showing more organized AF. For instance, patient

9 (Fig. 2(b)), characterized by organized AF, showed a first

PC direction which keeps quite constant over time. This

underlines a relative stationarity of the main AA potential

pattern, which shows a bimodal distribution and seems to

be located mainly in the left atrium. This is in line with the

pathophysiology of AF, since the pulmonary veins have been

revealed to be an important source of spontaneous electrical

activity that initiates AF [5]. Their position close to the

left atrium makes back leads suitable to observe them, also

explaining why back leads reveal to be more significant in an

automated analysis of uniform distributions. The automated

classification presented in Sec. III-B may be affected by

being strongly data driven. Further work is demanded in

order to make it more robust, and in this sense a wider

dataset is needed, possibly including simultaneous invasive

electrograms in order to have an objective reference for a

classification of the patients in different AF classes. Finally,

these results may be useful to improve AF diagnosis and a

priori efficient treatment selection.
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