
  

  

Abstract— Non-contact, non-invasive monitoring of 
hemodynamic parameters would be ideal for medical 
monitoring in a variety of environments. Radio Frequency 
Impedance Interrogation (RFII) measures hemodynamic 
function via resonance frequency coupling to a hydrophilic 
protein molecule. While the application of this technology to 
hemodynamic monitoring has demonstrated initial success, this 
preliminary study examined the use of RFII for subject 
identification by waveform signal analysis, which would allow 
confirmation of the identity of a subject in an operational 
setting prior to rescue efforts. Preliminary results demonstrate 
an excellent recognition rate using the RFII signature and 
pattern classification.  Each individual has a consistent pattern 
during the initial waveform identification period that is visually 
distinct from the other individuals in the data set.  These results 
suggest that RFII may be of great utility in the pre-hospital 
triage setting for patient monitoring and for the rapid 
identification of subjects in the operational setting. 

I. INTRODUCTION 
onitoring of hemodynamic function without invasive 
techniques or skin contact has applications in 

domestic and operational medicine. Potential applications of 
such technologies include rapid assessment of hemodynamic 
status, improvement of early medical intervention, and 
continuous monitoring of subjects without risks associated 
with invasive techniques.  Initial investigations have 
successfully demonstrated the use of a non-invasive radio 
frequency device for the non-invasive monitoring of heart 
rate (HR) and heart rate variability (HRV).  However, such 
technology may also prove to be effective in the rapid 
identification of subjects by triage forces prior to triage and 
extraction efforts.  Such identification could improve the 
ability in an operational scenario to verify the subject as 
friendly, injured, and/or requiring expedited evacuation.   
This paper proposes the use of a non-invasive radio 
frequency device applied for monitoring of HR and HRV to 
be further utilized for subject identification by waveform 
signal analysis, allowing triage forces to first confirm the 
identity of a subject prior to rescue efforts. 
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RFII Background and Development 
Radio frequency impedance interrogation (RFII) measures 

the resonance of a radio frequency signal with anatomical 
structures in motion then processes that signal’s return loss 
via advanced algorithms to generate instantaneous as well as 
trending measurements of HR and HRV.  The RFII device 
transmits a single frequency RF tone set between 905 to 925 
MHz, with no transmitter modulation.  The Transducer 
Antenna Probe (TAP) is a specially modified microstrip 
antenna that is designed to direct the RFII transmitter tone to 
the blood and tissue of the cardiac mass below the sternum.  
Biological materials are electrically heterogeneous with 
different tissue types having significantly different complex 
dielectric constants.  Blood and blood-filled muscle are 
tissue entities with the highest dielectric constants, a 
magnitude higher than the lowest dielectric constant tissues 
such as bone and fat.  The TAP has been specifically 
designed to match the frequency range for dipole resonance 
with water-bound hemoglobin molecules [1]-[2].   
 

This resonant signal is received by the bidirectional TAP.  
A high isolation duplexer prevents any unwanted RFII 
transmitter energy from reaching the receiver. A 
cardiosynchronous waveform is generated by cardiac 
motion, dependent on blood volume and hemoglobin 
concentration. This waveform provides significant infor-
mation at very low frequencies from less than 100 MHz to a 
few hundred Hz allowing the RFII to detect cardiac activity 
with temporal correlation to the ECG waveform (Figure 1). 
 

The TAP is tuned for high return loss, detecting minimal 
changes in reflected energy from human tissue interfaces, 
enabling detection of the radiowave resonance as modulated 
by mechanical heart activity. At or near resonant 
frequencies, changes in blood volume and cardiac motion 
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Figure 1: Temporal correlation of ECG (top) and RFII first derivative (dZ/dt) 
waveform (bottom). 
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will create small deviations in the radiowave resonant 
coupling frequency, thus modulating the RFII transmitter 
frequency tone.  This modulation of the RFII transmitter 
tone is at a maximum level at or near the resonant coupling 
frequency since a small deviation in resonant frequency 
creates a significant phase change [3].  As opposed to pure 
Doppler, which would produce very small phase changes 
from detecting slight motion of the chest wall, the RFII 
system produces a larger modulated phase change, enhanced 
by dipole resonance, making RFII specific to blood and 
cardiac tissue and capable of detecting subtle changes [4]. 

 
The RFII waveform is clearly associated with the ECG 

waveform (Figure 2). RFII waves (and derivatives) appear to 
match ECG intervals, yet RFII peaks lag slightly behind the 
QRS peaks. This lag appears to be a relatively constant 
interval by approximately 50 msec. It is theorized that the 
RFII signal is responding to changes in velocity identified 
during contraction phase of the cardiac cycle, which would 
follow the electrical conduction identified by the ECG. In 
other words, the ECG identifies the electric signal as it 
passes through the heart, resulting in cardiac contraction; the 
change in velocity of the blood during contraction alters the 
return loss of the RFII signal, resulting in RFII waveform 
changes. Similarly, as blood velocity decreases during 
diastole, the RFII waveform would return to baseline. 

 
The correlation of the RFII signal to ECG and cardiac 

impedance (dZ/dt, the first derivative of the RFII signal, 
where Z is impedance) is demonstrated in Figure 2.  The 
second derivative of the RFII signal provides interesting 
results when compared to ECG and impedance.  One 
example noted here in the systolic portion of the cardiac 
cycle is the timing of the peak amplitude of the waveform 
d2Z/dt2, which coincides with the end of the QRS complex 
of the ECG and the beginning of the peak rise slope of the 
dZ/dt waveform. These points match the timing of the 
opening of the aortic valve, the peak ejection time. This is 
intuitive since the d2Z/dt2 waveform (a second order time 
derivative of the RFII waveform) represents acceleration; in 
this case, the acceleration of blood as it is ejected from the 
left ventricle. 
 

While much of this work is preliminary and requires 
further investigation, this correlation suggests that the RFII 
waveform can be utilized as a monitor of cardiovascular 
activity, specifically to identify heart rate and heart rate 
variability, without the limitations imposed by current wired 
and contact/invasive technologic standards such as ECG. 
 
RFII for Subject Identification 

In addition to successful cardiac monitoring of patients by 
RFII, one of the novel signatures unique to RFII technology 
is the initial impedance/phase response as the device 
achieves resonant coupling with the person's heart. It does 
this by finding the optimal tuning frequency resonance for 
each subject’s cardiosynchronous waveform. The 
discriminatory capability of this impedance response 
function during the initial frequency tuning stage was inves- 

 
 
 
 
tigated in a small subject pool to determine the feasibility of 
RFII as a subject-identifying biometric tool during 
hemodynamic monitoring in a triage scenario. 

II. METHODS 
In this preliminary investigation, the initiation sequence 

utilized to identify the subject’s optimal resonant frequency 
was investigated in four subjects. Four consenting, volunteer 
individuals were instrumented with the RFII device for 
monitoring.  Each of these four individuals was recorded for 
30 data sets. Each recording consists of 20 measurements of 
the waveform generated by the initiation sequence, taken at 
sampling intervals of 10 ms, approximately 0.2 seconds per 
recording. The recordings were made when the device first 
initiates and before the signal reaches the steady-state, 
during which time the initiation sequence normally examines 
the frequency tuning spectrum with a stepwise signal 
analysis of frequency ranges from 905-925 MHz. However 
in this experiment, all data were recorded at 910 MHz to 
minimize variation inherent at each frequency. The system 
was re-initialized 30 times for each subject, and 20 
waveform measurements were taken from each dataset for 
analysis. 

 
As a basic examination, the raw data was visualized to 

identify any possibility of using each individual’s initiation 
sequence as a biometric signature.  Figure 3 plots the RFII 
signals of the initial impedance response for each of 30 
recordings of the subjects, with each subject represented by 
a different color.  As shown, the raw data already 
demonstrate a discernable, unique pattern per subject.   

 
Although classification on this raw data would have a 

reasonable performance, this approach would not be feasible 
as the number of subjects increase and data differences 
between subjects become more subtle.  Thus, Principal 
Component Analysis (PCA) was applied to the initiation 
sequence RFII waveforms generated by each subject to 
obtain features [10].  The Nearest Neighbor algorithm was 
used as a classifier with a Euclidean distance metric.   The 

Figure 2: RFII I waveform correlated against ECG & ICG waveforms.  
The channels, top to bottom, are as follows: RFII waveform, ECG, dZ/dt 
(first derivative), RFII d(dZ/dt) (second derivative).   
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training set was formed from ten randomly selected data 
points from each of the four subjects, comprising forty data 
points in all.  The remaining twenty data points from each 
subject (80 in total) were withheld for testing as a validation 
set.  
 

PCA extracts features in the signals based on analyzing 
the directions of maximum variation, which improves 
subject identification despite very subtle differences. The 
motivation is to find a projection space that will encode any 
variance in data while maintaining a small reconstruction 
error to conserve information.  This results in an 
optimization problem to maximize the variance (assuming 
zero mean centered data):  
 
arg max E [(ωTx - ωTμ)2] = arg max ωT Σ ω 
        ω   = 1                                       ω  = 1 
 
Each signal of the training set is placed into the data matrix χ 
vectorizing each sample, where μ is the global mean and Σ 
corresponds to the sample covariance matrix.  
 

The optimization problem under the unit norm constraint 
for the projection vectors can be solved using the following 
Lagrangian optimization: 

 
 L (ω, λ) = ωT Σ ω – λ (ωTω – 1) 

L (ω, λ) = 2 Σ ω – 2 λ ω = 0 
          Σ ω = λ ω        

 
 

This optimization results in computing the eigen-
decomposition of the covariance matrix, where the 
eigenvectors of largest eigenvalue represent directions with 
maximum variance. These eigenvectors form an orthogonal 
basis that can represent the input data. More interestingly, it 
allows us to reduce the dimensionality of the feature space 
by retaining the most dominant eigenvectors. Each sample 
can now be represented in a minimum squared error 
reconstruction sense in relation to the corresponding 
eigenvalues. The eigenvalues represent the variance captured 
along the direction of the corresponding eigenvectors. We 
can choose how many of the PCA feature vectors to use 
depending upon the percentage of variation in the data cap- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
tured by those eigenvectors.   
 

We employed a k=1 Nearest Neighbor classification with 
a Euclidean-distance metric used to determine to which 
subject each signal belongs. Since the training and testing 
sets were randomly partitioned, the classification experiment 
was run twenty times to account for any variability. 
Individual PCA (IPCA) was also attempted using the thirty 
segments from each of the four subjects to build individual 
subspaces. Ten segments from each subject were randomly 
chosen for the training set, and the remaining twenty 
segments were used for the testing set. IPCA builds an 
individual subspace for placement of each subject’s 
waveform data. The same process for PCA was used 
separately for each subject, giving us four feature spaces. 
For classification, the testing set was projected onto each 
feature space. The Euclidean-distance metric was used to 
determine the error between the test signal and the closest 
training signal of each subject. Each test point was ascribed 
to the class whose feature space had the minimum error.  

III. RESULTS 
While only a small number of subjects were analyzed 

during this preliminary study, a high classification rate was 
achieved using the RFII signature and pattern classification.  
Each individual has a consistent pattern during the start-up 
period that is visually distinct from the other individuals in 
the data set.  The system was re-initialized 30 times per 
person, yet the patterns are quite consistent and 
discriminative.  The results of the waveform analysis of this 
start-up period are presented in Figure 3. 
 
Principal Component RFII Transient Analysis 

The minimum data retention in the first two eigenvectors 
across all the twenty runs was 92%.  We chose to retain the 
first three eigenvectors to provide more than sufficient 
capture of variability and discrimination. The projection of 
these data onto three-dimensional space spanned by the three 
dominant eigenvectors shows good separation among the 
four classes (projection results from one random run are 
shown in Figure 4). Each subject in the dataset is represented 
by only 3 numbers, the first three principle eigenvalues.   

Figure 3: Plot of the RFII waveform initializing impedance response for each of the 30 recordings from the subjects. The plots are colored by subject. 
These patterns demonstrated exclusivity of the signal pattern for each subject. 
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This low overhead provides a feasible algorithm to embed 
on a hardware platform, and a rapid search of the database, 
ideal for rapid subject identification in an operational setting.  

 
Using a nearest-neighbor classifier, we obtained 20/20 

accurate subject identification for each of 4 runs. A 100% 
recognition rate is achieved through the use of only two 
eigenvectors out of the total of twenty eigenvectors. 
 
Individual Principal Component Analysis 

An IPCA individual subspace was built for each subject 
then nearest-subspace classification was performed [11]. 
Specifically, the ID corresponding to the subspace that 
yielded the smallest reconstruction error of each test sample 
was chosen.  A 100% recognition rate, with 20/20 accurate 
subject identification, was achieved through the IPCA with a 
Nearest-Subspace classification. 

IV. CONCLUSIONS 
Clearly, the results are highly encouraging even with such 

a small initial dataset. Comparing to state-of-the-art 
published literature on ECG biometric analysis, which 
included pools of only 9-20 subjects with a range of 83%-
100% recognition rates, these initial data have yielded 
similar or superior performance on a small dataset with a 
less computationally intensive classification schemes [5]-[9]. 
It is noted that this RFII signature is unlike ECG data and 
unique to RFII technology, providing a technological edge in 
non-invasive biometric identification using the RFII. 

 
Further analysis needs to be performed utilizing a 

significantly larger human subject dataset.  In addition, 
waveform analysis of all the frequency sweep transient 
signals should be examined. It is expected that this will 
provide a larger set of rich features to generalize and allow 
scaling to a much larger population for robust biometric 
identification. It is anticipated that future development of 
different pattern classification methods, evaluation of 
computational complexity, and integration of methods onto 
compact hardware platforms will allow for rapid subject  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
identification while monitoring hemodynamic parameters, 
which could provide great value when applied to operational 
medical triage efforts. 
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