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Abstract-- Detecting affective changes of computer users is a 

current challenge in human-computer interaction which is 

being addressed with the help of biomedical engineering 

concepts. This article presents a new approach to recognize the 

affective state (“relaxation” vs. “stress”) of a computer user 

from analysis of his/her pupil diameter variations caused by 

sympathetic activation. Wavelet denoising and Kalman filtering 

methods are first used to remove abrupt changes in the raw 

Pupil Diameter (PD) signal. Then three features are extracted 

from the preprocessed PD signal for the affective state 

classification. Finally, a random tree classifier is implemented, 

achieving an accuracy of 86.78%. In these experiments the Eye 

Blink Frequency (EBF), is also recorded and used for affective 

state classification, but the results show that the PD is a more 

promising physiological signal for affective assessment.  
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I. INTRODUCTION 

Affective computing, a relatively new branch of human-

computer interaction, attempts to recognize, process, 

interpret and respond to the affective states of the computer 

user. It aims to close the communication gap between the 

human and the machine so as to help people learn percep-

tively and enhance a variety of other cognitive functions, 

while interacting with computers [1]. The development of 

affective computing systems will benefit the future practice 

of medicine in many ways: “From advisory systems that 

understand emotional attitudes toward medical outcomes … 

to computer simulations of emotions and their disorders” [2]. 

In medical applications of computers, as in many other areas 

of application, knowledge of a user’s affect can provide 

useful feedback regarding the degree to which a user’s goals 

are being met, enabling dynamic and intelligent adaptation 

[3].  

A variety of methods for measuring affective states in 

the users have been tried, such as the identification of facial 

expressions, in isolation, or in combination with speech 

understanding and body gesture recognition [4]. However, 

these methods for identifying the emotions of the computer 

user are susceptible to environmental interference or 

voluntary masking. Therefore, alternative approaches, which 

analyze a variety of autonomic activities such as Electroen-

cephalogram (EEG), Electrocardiogram (ECG), Blood 

Volume Pulse (BVP), Skin Temperature (ST), Galvanic Skin 

Response (GSR), etc., have been chosen.  

From human physiology studies, the autonomic nervous 

system (ANS) is considered to include three separate 

systems or divisions: the sympathetic, the parasympathetic 

and the enteric system (now generally accepted as a separate 

system whose main function is to innervate the gut region of 

the body) [5]. The sympathetic nervous system (SNS) 

originates in the thoracic and lumbar regions of the spinal 

cord. When fully activated, this division readies the body for 

a crisis that may require sudden, intense physical activity, 

which is known as the “fight or flight” response [3]. 

Generally an increase in sympathetic activity dilates the 

pupil diameter, causes the sweat glands to secrete copious 

sweat, increases the heart rate, and so on. On the other hand, 

the parasympathetic nervous system (PSNS) originates in the 

brain stem and the lower part of the spinal cord, and 

typically functions in opposition to the SNS. The parasym-

pathetic division of the ANS stimulates visceral activity and 

is generally considered to cause a relaxation of the body [3]. 

These two divisions may work independently or jointly to 

control a given stage of a complex process. In this study, we 

monitored the Pupil Diameter (PD) signal and tracked the 

rate of eye blinks, and proposed a new approach to detect the 

sympathetic activation associated with a multifaceted 

emotional state – “stress”.  

     The human pupil is a circular aperture at the center of the 

iris of the eye, through which light passes to the retina. The 

range of the pupil diameter is from 1.5mm to 9mm. The 

diameter of the pupil is controlled by two opposing sets of 

muscles in the iris, the sphincter and dilator pupillae, which 

are governed by the parasympathetic and sympathetic 

divisions of the ANS [6]. The sympathetic ANS division, 

mediated by posterior hypothalamic nuclei, produces 

enlargement of the pupil by direct stimulation of the dilator 

muscles, which causes them to contract [7]. Pupil constric-

tion is caused by excitation of the circular pupillary constric-

tion muscles innervated by fibers from the parasympathetic 

division. The motor nucleus for these muscles is the 

Edinger-Westphal nucleus located in the midbrain [8]. The 

human pupil dilations and constrictions, governed by the 

ANS, have close relationships with emotions. In fact, 

previous research showed that the pupil size variation can be 

an indication of affective processing when using auditory 

emotional stimulation [9]. Those previous findings prompted 

us to attempt to use the pupil size variation for the detection 

of affective changes during human-computer interaction.  
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II. SIGNAL MONITORING 

In this work, we measured and analyzed the PD signal to 

determine the affective state of a computer user. At the same 

time, the Eye Blink Frequency (EBF), which can be obtained 

from the original PD signal, was also monitored, since Haak 

et al. [10] proposed that there is a strong correlation between 

eye blink frequency and emotional stress. Bacher and Allen 

[11] also showed that, during their experiments, participants 

who reported having experienced a “stressful event” 

exhibited more blinking than those who reported “no 

stressful events”.  

A. Software Used for Affective Stimulation 

    In our study, the “Stroop Color-Word Interference Test”, 

which elicits mild mental stress in the experimental subjects 

during controlled intervals, is used in order to observe the 

changes in the PD signal and its correlation to the affective 

states of “stress” and “relaxation”. 

In the test, a word presented to the subject designates a 

color, and is written in a font color that may (“Congruent”) 

or not (“Incongruent”) match its meaning. The subjects were 

instructed automatically by the program to click one of the 

five screen buttons to indicate the font color of the word 

presented. Fig. 1 shows a typical (Incongruent) example of 

this test interface and Fig. 2 shows the complete experiment 

protocol, comprising three consecutive sections. 

  

 
Fig. 1. Sample of the Stroop test interface. 

 

        
Fig. 2. Stimulus schedule of the experimental protocol. 

      In each section, there were four segments, including:  

� ‘IS’ – the Introductory Segment to let the subject get 

used to the task environment, in order to establish an 

appropriate initial level for his/her psychological state, 

according to the Law of Initial Values (LIV) ;   

� ‘C’ – the Congruent segment, comprising 45 Stroop 

congruent word presentations (font color matches the 

meaning of the word), which are not expected to elicit 

significant stress in the subject; 

� ‘IC’ – the Incongruent segment, in which the font color 

and the meaning of the 30 words presented are different, 

which is expected to induce stress in the subject, accord-

ing to previous research reported in the psychophysiolog-

ical literature; 

� ‘RS’ – a Resting Segment to let the subject relax for 

some time.  

At the beginning of each C, IC or RS segments, the binary 

codes (01, 10 or 11, respectively) shown in Fig. 2, serve as 

time-stamps for the recorded physiological signals.  

B. Hardware Setup 

 The visual stimuli for the subject (Stroop test) were 

displayed on the screen of the TOBII T60 eye tracker. The 

program developed for the eye tracking system allows the 

extraction of the PD measurements of both eyes and their 

validity codes at a frequency of 60 samples/second. The 

average ((left + right) / 2) PD signal, together with time 

stamp codes created through the experiment and recorded 

using a multi-channel DAQ system (MCC PCI-DAS6023 

board) were saved to permanent storage files for off-line 

analysis. 

                            III. SIGNAL PROCESSING  

A. Physiological Signal Preprocessing 

In this research, wavelet denoising and Kalman filtering 

methods were applied as the preprocessing procedures to 

remove the noise of the raw PD signal. However, as a first 

step, the disruptions of the PD signal caused by eye blinking 

had to be identified in order to compensate them by linear 

interpolation of the PD data and also to derive the Eye Blink 

Frequency (EBF), which was also considered for our study. 

Fig. 3 below shows the results of the blink removal and 

interpolation process (bottom) on a raw PD signal (top). 
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      Figure 3. Raw PD data and signal after blinking artifact removal 

    From the appearance of the signal illustrated in Fig. 3, it is 

evident that, even after the elimination of blinking transients, 

the PD signals have a substantial amount of high frequency 

variability that is not likely caused by the actual size change 

of the pupil diameter. Therefore, the wavelet denoising and 

Kalman filtering methods were utilized to lessen this artifact.  

Wavelet Denoising removes noise from signals using 

wavelet transforms, which are able to preserve the shape of 

the real signal being monitored (in this case, the pupil 

diameter).The general procedures are as follows [12]:  

1. Apply the wavelet transform to the noisy signal to 

produce the noisy wavelet coefficients (approxima-
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tion coefficients and detail coefficients) to a level in 

which the noise can be separated and removed. 

2. Select an appropriate threshold at each level and 

apply a thresholding method to remove the noise by 

altering the values of the detail coefficients. 

3. Perform inverse wavelet transform on the approxi-

mation coefficients and the altered detail coefficients 

to obtain a denoised signal.  

     Figure 4 shows the complete PD signal recorded during 

an experiment (top) and after wavelet denosing (middle). 

The vertical lines are the segment transition boundaries. The 

most important boundaries are those that separate each 

congruent Stroop segment (C) from the Incongruent Stroop 

segment (IC) that follows. It is obvious from Fig.4 (middle) 

that wavelet denoising helped remove most of the abrupt 

changes of the PD but there are still some artifactual sudden 

changes. Therefore, Kalman filtering is used as a follow-up 

procedure to further enhance the PD signal. 

     Kalman filtering is an iterative computational algorithm 

designed to improve noisy measurements, current state 

estimates and calculate the forecasts for time series models. 

The filter is constructed as a mean squared error minimizer, 

whose weights in the update rules are chosen to ensure that 

the forecast variances are minimized [13].  The output of the 

PD signal after Kalman filtering is illustrated in Fig. 4 

(lower), which displays a noticeable improvement in the 

signal. As expected, the processed PD signal has significant 

increases during the Incongruent segments, compared with 

the signal in the Congruent segments.  
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Fig. 4. The original signal(upper), the signal after wavelet denois-

ing(middle) and the signal after Kalman filtering (lower) 

 

B. Data Normalization and Feature Extraction 

    In order to perform the classification of the segments, the 

PD signal is normalized to the range [-1, 1] before extracting 

features from it, since its baseline for different subjects is 

different. The normalized signal is obtained as: 

         
' min

max min

( ) -
( ) 2* -1

-

f n f
f n

f f
=            n=1,2,...,M              (1) 

where f(n) and f’(n) are the original and normalized signals, 

respectively. 

 Figure 4 shows that the filtered PD signal exhibits rapid 

increases at the beginning of the Incongruent segments, 

which are not observed at the beginning of the Congruent 

segments. We sought to obtain a feature of the PD signal 

that reflected this difference between the onset of “relaxed” 

(Congruent) and “stressed” (Incongruent) segments. We 

used the Walsh transform towards this end, since it has been 

employed successfully to detect interictal spikes in elec-

troencephalogram (EEG) data [14] and the upstrokes in the 

carotid pulse wave [15], both of which are also characterized 

by abrupt increases.  

The 1D Walsh transform function implemented is defined 

as 

 
q-1N-1

b[i](m)*b[q-1-i](u)

m=0 i=0

1
W(u)= y(m) (-1)

N� ∏    u=0,1,...,N-1       (2) 

where y(m) is the one-dimensional sequence being trans-

formed and b[k](u) is the k
th

 bit in the binary representation 

of u. W(u) are the Walsh coefficients, which define the 

signal in terms of the functions that serve as basis in the 

Walsh transform. 

    In this study, we analyze eight consecutive windows, with 

100 samples each, from the beginning of each segment (both 

C and IC). The eight mean values of these windows are 

formed into a sequence to represent the trend of the PD 

signal during the beginning of the C and IC segments.  

Figure 5 shows the Walsh transform coefficients (bottom) 

obtained from these sets of 8 mean values for the 6 segments 

in the PD data (top) from one experimental subject. 
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Fig.5. Walsh transform of mean onset values of the PD signal 

for six Stroop segments of one subject 

 

Application of the Walsh transform decomposes each 

original signal into a set of orthogonal functions, and 

encodes the decomposition in the resulting Walsh coeffi-

cients, which are ordered in a progression called “sequency”. 

The first and last few coefficients in this ordering are said to 

be the “low frequent” and “high frequent” components of the 

PD signal, respectively. In our study, only the “low fre-

quent” components of the PD signal (which represent the 

overall trend of the signal, rather than the details) are of 

interest. Therefore the feature sought is extracted from only 

the first two Walsh coefficients. Specifically, only the 

difference between the first and the second Walsh coeffi-

cient during the onset period of each Stroop segment is 

utilized as a feature, and denoted as “PDWalsh”. For the 

example illustrated in Fig. 5, the “PDWalsh” values for the 
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three Congruent Stroop segments are 0.5848, 0.1162 and 

0.802 whereas for the three Incongruent Stroop segments the 

“PDWalsh” values are -0.4943, -0.4726 and -0.4268. 

Similarly, it is expected that positive “PDWalsh” values will 

be observed in the Incongruent segments and not in the 

Congruent segments. In this study, three other features 

derived from PD and EBF signals are also used, which are 

described in Table I. 

 
   TABLE I 

FEATURES EXTRACTED FROM THE PD AND EBF SIGNALS  

 

IV. AFFECTIVE ASSESSMENT  

      The “relaxed” vs. “stressed” classification of segments 

from PD and EBF features in our study was performed using 

the “Weka” software, which can be freely downloaded from 

http://www.cs.waikato.ac.nz/ml/weka/. The machine 

learning classification method utilized is called “Random 

Tree”, and consists of using a decision tree classifier that 

considers a given number of random features at each node of 

the tree [16]. Due to the limited space for this paper, we 

direct the reader interested in details of the well-established 

decision tree classifier methodology to a comprehensive 

survey [17]. Classification was performed on 180 data 

segments (90 “C” and 90 “IC”), collected from 30 subjects. 

 To compare the significance of the PD and EBF 

signals for affective assessment (“relaxation” vs. “stress”), 

three different approaches for classification, involving 

different subsets of the features derived from PD and EBF, 

were tried. Table II shows these classification approaches 

and their corresponding results. The best accuracy was 

obtained using only the 3 PD features (Approach 2). 

 
TABLE II 

RESULTS OF STRESS CLASSFICATION  

Approach # Condition Accuracy 

    1 Using all features extracted from PD 

and EBF (4 features) 
      77.22% 

    2 Using features extracted from PD (3 

features) 

       86.78% 

    3 Using the feature extracted from EBF 

(1feature) 
       61.67% 

 

 

                              V. DISSCUSSION AND CONCLUSION 

This paper proposes a new affective assessment approach 

to classify the “stress” vs. “relaxation” states of computer 

users through the monitoring of the Pupil Diameter (PD) 

signal. First, the wavelet denoising and Kalman filtering 

methods were used to remove abruptly-changing compo-

nents of the raw PD signal. Then three features, PDmean, 

PDmax and PDWalsh, were extracted from the filtered PD 

signal, to emphasize the most meaningful characteristics of 

PD, for classification purposes. Finally, a random tree 

classifier was implemented to assess the “relaxation” vs. 

“stress” affective state of computer users, which achieved an 

accuracy of 86.78%. Since eye blinks can also be detected in 

the measured PD signal, we investigated the possibility of 

also incorporating the Eye Blink Frequency as an additional 

feature for segment classification. However, the resulting 4-

feature classifier was less accurate (only 77.22%). We also 

observed that a classifier based on EBF alone recorded a 

much lower accuracy (61.67%). Therefore, all these 

observations suggest that the PD signal may be a particularly 

important physiological signal for affective assessment. 
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Biosignal    Features Definition 

     
    PD 

  (3 features ) 

  PDmean Average value of the PD signal 

   PDmax Maximum value of the PD signal 

  

 PDWalsh 

Difference value between the first and 

the second Walsh coefficients based 

on PD signal during the onset of each 

Stroop segment 

EBF(1 feature)     EBF Eye Blink Frequency (blinks / time) 
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