
  

  

Abstract—Approximate Entropy (ApEn) and Permutation 
Entropy (PE) have been recently introduced for assessment of 
anesthetic depth. Both measures have previously been shown to 
track changes in the electrical brain activity related to the 
administration of anesthetic agents. In this paper ApEn and PE 
are compared for the automatic classification of ‘awake’ and 
‘anesthetized’ state using a Support Vector Machine to assess 
their robustness for potential use in a device for monitoring 
awareness during general anesthesia. It was found that both 
measures provide linearly separable features and we are able to 
discriminate between the two states with accuracy greater than 
96% using either of the two entropy measures.   

I. INTRODUCTION 
ENERAL anesthesia is a chemically-induced reversible 
state of unconsciousness and depression of reflexes to 

afferent stimuli. Modern anesthesia involves the 
administration of different drugs to achieve the desired 
components of unconsciousness, amnesia, analgesia and 
immobility. Awareness during general anesthesia, even 
though considered a rare event, has severe psychological 
consequences for those who experience it. The incidence of 
awareness ranges from 0.1-0.8% [1] and is affected by a 
number of factors, such as patient characteristics and the 
type of surgery [2]. Devices that monitor the depth of 
anesthesia are now commercially available; such devices 
could provide a valuable means of identifying awareness 
during surgery, particularly since the patient himself cannot 
communicate this to the anesthetist due to the induced 
immobility. These devices function by monitoring specific 
changes in the electrical brain activity (EEG), as obtained 
through 2 electrodes placed on the patient’s forehead, and 
usually converting them to a number corresponding to the 
level of hypnosis (0-100; no activity – fully awake 
respectively). Available monitors are based on changes in 
the spectral content of the EEG, which are non-unique to 
anaesthesia. 

Recently entropy measures have been applied to study the 
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changes in the EEG activity induced by administration of 
anesthetic agents. More specifically: (1) Permutation 
Entropy (PE) is a linear measure of complexity based on 
mapping a time series on a symbolic sequence to describe 
the relationships between present and past samples [3]. Its 
previous application on EEG data obtained from anaesthesia 
has shown that PE tracks the level of hypnosis, as its values 
decrease with an increasing level of hypnosis [4-5]. The 
simplicity and fast speed of estimation constitute PE a good 
candidate for real-time and online applications. (2) 
Approximate Entropy (ApEn) is a measure of signal 
irregularity based on nonlinear dynamics [6]. It has recently 
been applied to study changes in the EEG regularity as a 
result of anesthetic agent administration [7-8].  

In this paper we utilize a Support Vector Machine (SVM) 
to classify EEG segments, obtained from 10 patients 
recovering from surgery under general anaesthesia, into one 
of the two states ‘Awake’ and ‘Anesthetized’ using PE and 
ApEn as features.  

II. METHODS 

A. Dataset 
The data used in this study were collected from 10 male 

patients of age 39.8±21.3 undergoing general and urological 
surgery at Nicosia General Hospital, Cyprus. The 24-channel 
configuration of the TruScan32 (Deymed Diagnostic) was 
used and electrodes placed at positions Fp1, Fp2, F7, F3, Fz, 
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2, 
according to the International 10/20 system, with an FCz 
reference. No filtering was performed during or after data 
collection and data was sampled at 256Hz. Data recording 
usually commenced while patients were still awake prior to 
administration of the anesthetic agents (induction), 
continued throughout the entire surgery, and until patients 
regained consciousness (ROC) at the end of surgery some 
time after the intravenous administration of anesthetics was 
switched off. The average duration of the EEG records is 
approximately 70mins (min: 40mins, max: 90mins). ROC 
was defined as the point at which the patient regained 
consciousness started responding to verbal commands or 
tactile stimuli by the anesthetist at the end of surgery. GA 
was induced by the on duty anesthetist using the regular 
procedures of the hospital. Standard patient monitoring was 
used and all patients were preoxygenated via a face mask 
prior to anesthesia induction with a propofol bolus. During 
induction some patients also received boluses of 
neuromuscular blocking agents and analgesic drugs. 
Maintenance of GA was achieved with an intravenous 
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administration of propofol at concentrations ranging between 
20-50 ml/h (200-500 mg/h) depending on patient 
characteristics and surgery requirements. In most patients 
remifentanil hydrochloride (Ultiva®; 2 mg, dissolved in 
40ml) was also administered intravenously throughout 
surgery at a rate ranging between 2-15 ml/h (0.1-0.75 mg/h). 

B. Permutation Entropy 
PE is a linear complexity measure for time series [3]. The 

relationship between present values and a fixed number of 
equidistant values at a given past time is captured through a 
symbolic mapping of the continuous time series. This 
mapping is achieved by splitting the time series into 
segments containing m  samples (where m  is called the 
embedding dimension) at a distance τ between them, and 
which overlap by )1( −m samples. For a given embedding 
dimension there will be !m  possible permutations (motifs). 
If each permutation is considered as a symbol, the embedded 
time vectors can be represented by a symbol sequence, j , 
each having probability distribution jp . Thus, based on the 

Shannon entropy definition the normalized PE, pH , of a 
given time series is defined as: 
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J  is the distinct number of symbols for a given embedding 

dimension ( )!mJ ≤ . The factor ( )!ln
1
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is a normalization 

factor such that ( ) 1!ln/0 ≤≤ mH p . PE measures the 
departure of a time series from a complete random one: the 
smaller the value of PE, the more regular the time series. 

C. Approximate Entropy 
Approximate Entropy (ApEn) is a measure originating 

from nonlinear dynamics, which quantifies the 
unpredictability or randomness of a signal [6]. It is also 
estimated by, first, splitting the time series of length N  into 
n -dimensional segments, ix , such that the predictability of 
current samples can be estimated based on the knowledge of 
the previous n  samples. The number of pairs of n -
dimensional segments that are in close proximity, count , is 
estimated based on a distance function such that =count  
number of jx  for which [ ] rd ji ≤xx ,  . [ ]...d  is the 

maximum absolute difference of the corresponding scalar 
components of each segment, and r is a variable specifying 
the tolerance in the ‘closeness’ of the vectors (a good choice 
is usually  σkr = , where [ ]25.0,1.0∈k  and σ  is the 
standard deviation of the signal [9]). The vector proximity is 
then used to define ( )1/)( +−= mNcountrCn

i . ApEn is then 
estimated as: 

)()( 1 rrAE nn +Φ−Φ=        (3) 

where ∑
+−

=+−
=Φ

1

1

)(ln
1

1)(
nN

i

n
i

n rC
nN

r     (4) 

ApEn reflects the dissimilarity in the occurrence of 
patterns of length n  and more complex patterns of length 

1+n . In other words, the more regular the time series, the 
bigger the similarity between n – and )1( +n –dimensional 
segments. Thus, a perfectly regular time series has an ApEn 
value of 0. As the irregularity of the time series increases, so 
does the ApEn. 

D. Support Vector Machine 
SVMs belong to the family of kernel-based classifiers [9]. 

The main idea behind SVMs is to use kernel functions to 
perform operations in the “data” space, corresponding to an 
implicit mapping of the data in a higher dimensional 
“feature” space where a hyperplane (decision boundary) that 
can separate the classes can be found. The simplest case is a 
linear SVM trained to classify linearly separable data. The 
constructed constraints define two parallel hyperplanes 
whose distance from the estimated decision boundary is 
maximal. The points lying on the two hyperplanes are called 
the support vectors. Estimating the decision boundary 
subject to the set of given constraints is a constrained 
optimization problem that can be solved in the Lagrange 
optimization framework.   

E. Data Analysis 
The main function of a DOA monitor is to alert the 

anesthetist when a subject becomes aware during surgery. 
Therefore, a minimal requirement for a DOA monitor is the 
ability to distinguish between the two states ‘Awake’ and 
‘Anesthetized’ (class ‘A’ and ‘B’ respectively). This was 
assessed through the following analysis: 
(1) Segments corresponding to the two classes were 
extracted from the continuous EEG recordings of 10 subjects 
around the ROC marker (132s pre- and 66s post-ROC).  
(2) Five brain areas were defined as the average activity of 
specified electrode grids: left frontal (LF – electrodes Fp1, 
F7, F3, T3, C3), right frontal (RF: – Fp2, F8, F4, C4, T4), 
left posterior (LP – T5, P3, O1), right posterior (RP – T6, 
P4, O2), and midline (Z – Fz, Cz, Pz). Visual inspection of 
the acquired data identified electrodes with bad quality 
signals from bad contact or no contact, which were 
subsequently excluded from estimation of the averages.  
(3) The entropy measures were estimated over 2-second non-
overlapping windows of the EEG segments from each of the 
five brain areas. The use of segments with such short 
duration ensures the stationarity of the EEG segments 
analyzed. Thus, the PE and ApEn feature vectors consisted 
of the following 5-dimensional values respectively: 
 

[
])()()()(                                   

)()()()()()(

mi
ZpHmi

RPpH

mi
LPpHmi

RFpHmi
LFpHi

CPE =
  (5) 

 

2599



  

[
]),(),(                                   

),(),(),(

nri
RFAEnri

RFAE

nri
RFAEnri

RFAEnri
LFAEi

CApEn =
  (6) 

 
{ }BAC ,∈  corresponds to one of the two classes, and 

CNi ,...,1=  denotes the ith 2-s segment from all the available 
segments of each class )( CN . After following guidelines in 
the literature the parameters for estimating the entropy 
measures were set as: 3=m  for PE [3], and 

2 ,1.0 == nr for ApEn [10]. Since no pre-processing or 
artifact removal was performed, the entropy values were 
smoothed (moving average filter, 10=n samples).  
(4) Performance was evaluated over 50=B  bootstrap 
repetitions. In each repetition, 70% of the available data was 
used for training, while the remaining 30% was used for 
testing. Linear and non-linear (Radial Basis Function, radius 
1) SVM was investigated. Performance was assessed as the 
sensitivity (7), specificity (8) and average accuracy (9): 
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where TP  (TN ) is the number of true positives (negatives), 
and pTN ( nTN ) is the total number of positive (negative) 
examples. In the following investigations, examples of class 
‘A’ (awake) were considered as positive, while class ‘B’ 
(anesthetized) as negative.  

III. RESULTS 
Previous studies indicate that the administration of 

anesthetics has the effect of decreasing the estimated PE 
values. This effect can be seen in figure 1 (left column), 
which shows the estimated subject-average PE over the five 
defined brain areas. During anesthesia a shift from higher to 
lower frequencies is observed and the brain activity becomes 
more regular, with posterior predominance. This effect is 
captured both by PE and ApEn, which display lower and 
higher values respectively over posterior regions (fig.1 (e)-
(h)) compared to frontal regions (fig.1 (a)-(d)) during 
anesthesia. At the point of ROC the PE is seen to increase, as 
the brain activity changes from lower to higher frequency 
rhythms. A corresponding increase in the ApEn values, 
indicating the return to more irregular activity, is only 
observed over posterior regions. Over frontal regions, the 
ApEn values display a decrease, followed by a slow 
increase. This is not unexpected as ApEn depends on the 
concentration of anesthetic agent. Here, intravenous 
anesthetic administration was switched off some minutes 
earlier. Hence, it is possible that ApEn has already increased 
following the metabolism of the anesthetic agents by the 
body and here we are observing smaller fluctuations (see 
also fig.2 in [8] for this effect). This requires further 
investigation over the entire duration of the surgery.  

Figure 2 shows the estimated SP, SE and AC, averaged 
over all subjects and bootstrap repetitions. The mean 
accuracy (± standard deviation) obtained is (a) linear SVM: 
0.96±0.05 and 0.97±0.01; and (b) nonlinear SVM: 0.98±0.01 
and 0.98±0.01 for PE and ApEn respectively. The subject-
wise maximum and minimum classification results obtained 
for PE and ApEn are shown in tables I (linear SVM) and II 
(nonlinear SVM).  

There is no difference between linear and nonlinear 
classification. This implies that both PE and ApEn features 
are linearly separable and, thus, there is no need for a 
complex nonlinear classifier to be utilized. Based on this 
finding, it may even be possible to apply a simple adaptive 
threshold classifier, which would be more appropriate for an 
online and real time anesthesia monitor. PE and ApEn show 
similar high performance, hence both can be utilized for 
discriminating between ‘awake’ and ‘anesthetized’ states. 
With ApEn a similar level of SP and SE is achieved, hence 
neither is sacrificed for the other, which is important. 
However, ApEn is more computationally complex and its 
estimation takes longer than PE. In addition, something 
which must be taken into consideration, both PE and ApEn 
essentially track the changes in the signal regularity as the 
brain activity shifts from higher to lower frequency after 
administration of the anesthetic agents. This change is not 
unique to anesthetic-induced unconsciousness, e.g. a similar 
shift in frequencies is observed during sleep. Hence, neither 
measure is a direct reflection of awareness, but utilizes the 
EEG activity as a proxy for awareness.  

IV. CONCLUSION 
We investigated the use of Permutation Entropy (PE) and 

Approximate Entropy (ApEn) as a means of classifying 
between ‘awake’ and ‘anesthetized’ state from the EEG of 
patients recovering from general anesthesia. Both measures 
provide linearly separable features and a mean classification 
accuracy greater than 96% is obtained. Hence, both could be 
potentially utilized in an anesthesia monitor to track the level 
of hypnosis of the patient. 

TABLE I 
SINGLE-SUBJECT MAXIMUM AND MINIMUM LINEAR CLASSIFICATION 

Feature 
Maximum Minimum 

SP SE ACa SP SE AC 
PE 1.00 0.99 0.99 0.84 0.79 0.81 
ApEn 1.00 0.99 0.99 0.92 0.96 0.95 

aSP: Specificity; SE: Sensitivity; AC: Accuracy 

TABLE II 
SINGLE-SUBJECT MAXIMUM AND MINIMUM NONLINEAR 

CLASSIFICATION 

Feature 
Maximum Minimum 

SP SE ACa SP SE AC 
PE 1.00 0.99 0.99 0.98 0.93 0.96 
ApEn 0.99 1.00 0.99 0.94 0.96 0.95 

aSP: Specificity; SE: Sensitivity; AC: Accuracy 
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Fig.1. Average PE (left) and ApEn (right) features for the five broad brain areas: (a) and (b) – left frontal; (c) and (d) – right frontal; (e) and (f) – left 
posterior; (g) and (h) – right posterior; (i) and (j) – midline. Vertical dashed line: ROC marker. X-axis in arbitrary samples (every sample corresponds to a 
PE or ApEn value estimated over a 2-second segment). 
 

 
Fig. 2. Classification results averaged over 10 subjects, with error bars (mean ± standard deviation). Top row : Permutation Entropy. Bottom row : 
Approximate Entropy. (a) and (c) : Linear SVM. (b) and (d ) : Non linear SVM (RBF). SP : Specificity (‘ Awake’) ; SE : Sensitivity (‘Anesthetized’) ; AC : 
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