
  

 
Abstract – Classification of multichannel uterine 

electromyogram (EMG) signals is addressed. Signals were 

recorded by a matrix of 16 electrodes. First, signals 

corresponding to each channel were individually classified 

using an artificial neural network (ANN) based on radial basis 

functions (RBF). The results have shown that the classification 

performance varies from one channel to another. Then, a 

decision fusion method based on these classification 

performances was tested. After fusion, the network yielded 

better classification accuracy than any individual channel could 

provide. The high percentage of correctly classified labor/non-

labor events proves the efficiency of multichannel recordings in 

detecting labor. These findings can be very useful for the aim of 

classifying antepartum versus labor patients. 

I. INTRODUCTION 

he bioelectrical signal recorded noninvasively from the 

abdominal wall of pregnant women during their 

gestational period is called the uterine electromyogram 

(EMG). This signal reflects the electrical properties of the 

uterine muscle contraction [1, 2] and provides valuable 

information about function aspects of the uterine 

contractility [3]. As a result, uterine EMG was extensively 

studied for many years. Many studies have demonstrated 

that it is potentially the best predictor of delivery and of 

great value for the diagnosis of preterm delivery [4, 5, 6]. 

However, classifying uterine EMG signals into labor/non-

labor or term/preterm classes remains a major challenge for 

the researchers. The aim of this study is to use multichannel 

analysis in order to distinguish pregnancy signals from labor 

signals. Multichannel analysis is a recent technique based on 

simultaneously recording the electrical activity at different 

locations. Multichannel classification has been already 

applied to EEG [7, 8] and ECG [9] but rarely to uterine 

EMG signals. In this study, we use a 4x4 electrode matrix 

positioned on the woman’s abdomen to record the uterine 

EMG signals. Then, in order to increase the signal to noise 

ratio, we consider vertical bipolar signals. Our signals form 

thus a rectangular 3x4 matrix and each contraction had a 12-

channel resolution [10]. However, when using multiple  
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biosensors at the same time, classifying the recorded 

biosignals becomes a complex task due to the large number 

of features encountered in this situation [11]. A fusion 

method is therefore required. The fusion method is a way to 

combine information from several channels, i.e., from 

different spatial regions. In our work, we use a decision 

fusion method which is defined as the process of fusing 

information from individual data sources after each data 

source has undergone preliminary classification [12]. The 

decision fusion method minimizes the amount of data to be 

transmitted between the individual sensors and the central 

fusion processor by limiting it to just the current decisions 

derived by the sensors [13]. In this paper, we extract first 

two classically used features from signals corresponding to 

each channel. These features are then fed to a classifier in 

order to classify our contractions into labor or non-labor 

classes. The binary classification problems are solved by an 

artificial neural network (ANN) classifier with a Gaussian 

radial basis function (RBF) kernel. Finally, a decision fusion 

rule based on the weighted sum of the individual decision of 

each channel is tested. 

II. METHODOLOGY 

A. Database description:  

Our analysis in this paper is based on digitized uterine EMG 

signals recorded on 32 women: twenty two were recorded 

during pregnancy (33 – 41 week of gestation, WG), seven 

during labor (37 – 42 WG) and three during both pregnancy 

and labor (33 – 42 WG).  

Recordings were made at the University Hospital of Amiens 

in France and at the Landspitali University hospital in 

Iceland by using a protocol approved by the relevant ethical 

committee (VSN 02-0006-V2). Contractions were monitored 

for at least one hour. Recordings were performed by using a 

16 electrode grid, arranged in a 4x4 matrix positioned on the 

women’s abdomen (fig.1). The third electrode column was 

always put on the uterine median axis. Reference electrodes 

were placed on each hip of the woman. Signals were 

sampled at 200 Hz. The bursts of uterine electrical activity 

corresponding to contractions were then manually 

segmented. In this study, in order to increase the signal to 

noise ratio, we considered vertical bipolar signals instead of 

monopolar ones. Our signals form thus a rectangular 3x4 

matrix. An example of the bipolar signals recorded on 

woman in labor is presented in figure 2. All the bursts 

presented a good signal to noise ratio on all bipolar channels. 

The recording device has an anti-aliasing filter with a cut-off 

frequency of 100 Hz.  
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Figure 1- Electrodes configuration on the woman’s abdominal wall 
 

 
Figure 2 - Example of 12 vertical bipolar signals obtained from the 4x4 

matrix on woman in labor. 

 

B. Preprocessing: 

Throughout this work, each individual channel was 

preprocessed before extracting the features. Preprocessing is 

performed in two stages: (1) unwanted signals were removed 

by filtering the contraction signals between 0.1 and 3 Hz; (2) 

all signals were normalized into the same amplitude in order 

to ensure that all features will have equal significance when 

training the model [14]. 

C. Feature extraction: 

Feature selection is an important step for solving 

classification and pattern recognition problems [15]. A good 

feature selection method will not only improve the 

performance of the classifier, but also reduce dimensionality 

of the input data and the computational complexity of the 

classifier. However, since the focus of this paper is to 

demonstrate the importance of multichannel recordings for 

the classification of uterine EMG signals, we wish to favor a 

small number of features. Therefore, only two features were 

used. The power of the contraction and the median 

frequency were extracted from the signals corresponding to 

each channel. These two classical features were chosen 

based on previous studies [6, 16, 17] and have shown that 

they may have either some predictive worth or some 

physiological significance.  

D.  Radial basis function network: 

Neural networks can be viewed as massively parallel 

computing systems consisting of an extremely large number 

of simple processors with many interconnections [18]. They 

have been successfully used to solve complicated pattern 

recognition and classification problems in different domains 

particularly in biomedical engineering and signal diagnosis.  

Radial basis function neural network is one of the most 

commonly used families of neural networks for pattern 

classification tasks. This type of network has two layers: a 

hidden layer and an output layer as shown in figure 3. Each 

unit in the hidden layer employs a radial basis function as 

the activation function. Various functions have been tested 

as activation functions for RBF networks. In pattern 

classification applications, the Gaussian function is preferred 

[18]. A Gaussian function is defined as: 
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Where    et   
  are the mean (position) and the variance 

(width) of the Gaussian kernel function corresponding to the 

class h.   is the input vector and     represents the Euclidian 

distance. Both the positions and the widths of these kernels 

must be learned from the training patterns. The output unit 

implements a weighted sum of hidden unit output.  

 

           

 

   

  

 

(2) 

 

For m=1,…,M, where     are the output weights, each 

corresponding to the connection between a hidden unit and 

an output unit, M represents the number of output units and 

g(.) is the activation function for nodes in the output layer. A 

linear or a sigmoid activation function can be considered. 

The weights     show the contribution of a hidden unit to 

the respective unit. 

For training, there are a variety of learning algorithms for the 

RBF network. The basic one employs a two-step learning 

strategy, or hybrid learning. It estimates kernel positions and 

kernel width using an unsupervised clustering algorithm, 

followed by a supervised least mean square (LMS) 

algorithm to determine the connection weights between the 

hidden layer and the output layer. After this initial solution is 

obtained, a supervised gradient-based algorithm can be used 

to refine the network parameters. 
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Figure 3 – RBF network in pattern classification 

 

E. Decision fusion: 

For each individual channel, a single RBF network was 

trained using the training data. Each classifier gave its 

“opinion” about a given input for each of the two classes. 

Then, a fusion decision rule was applied. Our multichannel 

fusion method is based on the observation that the channel 

with a high accuracy should have more influence on the 

decision making than the channel with a lower accuracy. 

Weights, noted λi (i=1,..12), are therefore associated to each 

channel to express quantitatively its goodness. The weights 

are supposed to represent its reliability. Herein, reliability 

measures which rank the channels according to their 

goodness are obtained based on the classification success of 

the trials during an independent training phase [19]. The 

final decision will be based on the weighted decision of each 

component classifier combined. However, in order to reduce 

the error due to the small sample size of training data, we 

used the leave-one-out cross validation method where a 

single observation taken from the entire samples is used as 

the validation data while the remaining observations are 

used for training the classifier. This is repeated such that 

each observation in the samples is used once in the 

validation data [15]. In this phase, the training set consisted 

of an equal number of trials from the two classes 

(pregnancy, labor). Otherwise, the classifier will be biased 

toward the class from which it has seen most feature vectors 

[11].  

40 contractions randomly chosen from each class of 

contractions (pregnancy, labor) were used in the training 

phase. Finally, an independent test set was used to evaluate 

our approach’s classification success rate.  

III. RESULTS: 

First the network was trained using the training set. Features 

were extracted from each channel, as explained above and 

fed to the RBF network. Each classifier gave its decision 

about the given input. In this paper, the results of the 

classification are given in terms of correct classification rate 

(CCR). The CCR of the training data for each channel are 

indicated in table 1.  

 
Table 1 - Classification table of pregnancy and labor contractions for each 

channel 

CHANNEL CCR OF 

PREGNANCY 

CONTRACTIONS 

CCR OF LABOR 

CONTRACTIONS 

OVERALL 

CLASSIFICATION 

ACCURACY 

VB1 73.3 37 55 

VB2 66.7 52 59 

VB3 80 43.3 62 

VB4 56.6 86.6 76 

VB5 56.6 73.3 65 

VB6 53.3 73.3 63 

VB7 36.6 46.6 42 

VB8 46.6 33.3 40 

VB9 40 76.6 58 

VB10 80 56.6 68 

VB11 63.3 63.3 63 

VB12 30 60 45 

 

The results show that the classification performance varies 

from one channel to another. Specifically, channel Vb4 had 

the highest overall predictive value (76%) while for channel 

Vb8 had the lowest (40%). As a result, the highest weight 

was assigned to channel Vb4 while the lowest weight was 

assigned to channel Vb8 after training. Here it should also be 

noted that the correct classification rate of pregnancy 

contractions was remarkably higher than of labor 

contractions. These observations are discussed later in the 

paper. Based on the classification accuracy obtained on the 

trials in the training set, the weights λi were assigned to each 

channel.  

Next, the trained network was used to classify the test 

signals. Herein, the testing method was also the leave-one-

out cross validation method. The final decision is based on 

the weighted sum of each classifier. 97 pregnancy 

contractions vs. 37 labor contractions were used in the test 

phase. The final decisions of the individual channels were 

fused by using the weighted decision fusion rule. Table 2 

shows the classification results of the test set.  

First, we notice that the overall classification accuracy was 

higher than any of the individual channels. 

By fusing individual decisions, an overall classification 

accuracy of 82.65 % was achieved. The CCR was as high as 

93% for pregnancy contractions and 72.3% for labor 

contractions as indicated in Table 2.  

The high percentage of correctly classified labor/non-labor 

events indicates explicitly just how efficient multichannel 

analysis is at detecting labor. Therefore, it can be seen that 

multichannel recordings can remarkably increase the 

classification rate of uterine EMG signals for both 

pregnancy and labor contractions.  

 
Table 2 - Classification table of pregnancy and labor contractions for each 

channel for the test data by using a weighted decision fusion rule 

 WEIGHTED DECISION FUSION 

METHOD 

CCR OF PREGNANCY 

CONTRACTIONS 

93 

CCR OF LABOR CONTRACTIONS 72.3 

OVERALL CLASSIFICATION 

ACCURACY 

82.65 
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IV. DISCUSSION: 

In this paper, we demonstrate the importance of 

multichannel recordings for the classification of uterine 

EMG signals. Herein, we have used a matrix of 16 

electrodes positioned on the abdominal wall of the pregnant 

women. Two classical features (power and median 

frequency) were extracted from each signal corresponding to 

each channel and were fed to the classifier. The results 

showed that the classification performance varied from one 

channel to another. Channels located on the median axis of 

the uterus showed lower CCR than the others. One possible 

explanation of this observable fact is that, throughout 

pregnancy, the channels located over the median axis show 

more activity than the channels located at the extremities 

where the activity remains weak. However, at labor, when 

the synchronization in the uterus becomes stronger, the 

uterine activity is considered to be fully propagated through 

the whole uterus and the uterine contractions become more 

coordinated[3]. Hence, a more homogeneous distribution of 

the power may be noticed. Electrodes positioned on the 

extremities are therefore more sensible to these variations 

than the ones positioned on the median axis; thus they had 

more influence on the decision making than the channels at 

the center of the matrix.  

On the other hand, when a decision fusion rule was applied, 

an improved accuracy of the classification decision 

compared to a decision based on any of the individual data 

sources alone was obtained.  

In addition to the noticeable improvement in the 

classification performance, multichannel recordings provide 

a certain number of important advantages. First, the 

measurements of one electrode are always confirmed by the 

measurements of the other electrodes; thus, the cooperative 

arrangement enhances the confidence of the final decision. 

Also, even though multiple electrodes would provide 

redundancy, this would enable the classifier to provide 

information in case of partial failure, data loss from one 

electrode which may occur when doing recordings that can 

last for more than an hour. These comparative aspects prove 

that multichannel recordings can be an efficient method for 

classifying bioelectrical signals. Although still to be tested, 

we believe that these results may be generalized by using 

other features and a large signal database. However, we 

believe that multichannel classification methods could help 

in classifying contractions leading to term or preterm labor.  

V. CONCLUSION  

Uterine EMG signal recorded by using multiple sensors was 

addressed. From this manuscript, we can conclude first that 

the classification of uterine EMG signals can be improved 

by using a multichannel fusion rule. Although simple 

parameters were used, the classification results were very 

promising. The high percentage of correctly classified 

labor/non-labor events indicates explicitly just how efficient 

this approach method is at detecting labor. Although still to 

be tested, we believe that the proposed classification method 

could help in classifying contractions leading to term or 

preterm labor. As our ultimate goal is to improve the 

detection of preterm labor, we find these results very 

promising. 
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