
  

Abstract—In this paper we present a new multiscale 

vesselness filtering technique to simultaneously compute 

optimal medial axes and boundaries on fundus images of the 

retina. The scale-invariance of the vessel cross-sectional profile 

in the frequency domain is examined, and phase congruency 

implementing the scale-invariance is utilised for multiscale 

vesselness filtering. This allows the vessel ridge and boundary 

evidence to be preserved under single filtering settings. We 

have performed width measurement experiments on a dataset 

of fundus images, using an optimal medial axis skeletonisation 

scheme as a post-processing step, to compare the proposed 

technique with a generalised Gaussian profile modelling 

approach. 

I. INTRODUCTION 

HERE are a variety of significant diseases (e.g.,  

hypertension and diabetes) that affect blood vessels of 

the retina. Measurement of vessel geometry such as 

diameters, branching angles, and branching lengths, can play 

a valuable role in the study and diagnosis of these diseases 

[1]. For example, the change in width of vessels within the 

fundus is believed to be indicative of abnormalities in 

disease states [1]. Manual delineation of the vasculature 

structure in retinal fundus images is tedious and expensive. 

Thus, tools of vessel detections are sought to preserve 

measurement information. Automated tools have the 

potential to improve the reliability and repeatability of many 

forms of retinal examination while reducing the costs 

involved. 

Frangi’s vesselness filtering (or multiscale ridge 

detection) and its variants are popular for detection of blood 

vessels in angiography images [2] [3]. Generally, the 

optimal scale was chosen such that maximal vesselness 

response for individual pixels is obtained. These techniques 

however are unreliable to produce boundary evidence, since 

“vesselness” was used, based on the eigenvalue analysis of 

the Hessian intensity matrix in scale space, as an image 

feature. Some extensions have been reported incorporating 

boundary identification or pixel classification algorithms [4].  

Sofka et al. used Gaussian matched filters in scale space 

to detect retinal vessel medials, and used edge measures to 

affect the confidence of medial nodes [5]. However, no 

optimal medials were produced, since the shape of the vessel 

was not taken into account. Wink et al. utilised Dijkstra’s 

algorithm to find optimal medials and the corresponding 

scale values based on vesselness [6]. Their work was 
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extended by incorporating vessel boundary evidence and the 

shape of the vessel [7]. Interestingly, several edge detectors 

were used jointly for estimating vessel boundary positions. 

The gradient magnitude filter was chosen to detect weak 

vessel edges, while Canny and Laplacian of Gaussian 

operators were less sensitive to noise. It is however difficult 

to determine appropriate threshold values on the response of 

vessel boundary to gradient-based edge detector, largely due 

to variations in contrast across retinal images. 

In the rest of this paper, the scale-invariance of the vessel 

cross-sectional profile in the frequency domain is examined, 

and phase congruency implementing the scale-invariance is 

utilised for multiscale vesselness filtering. The performance 

of the algorithm is compared to that of some other 

commonly known algorithms.  

II. METHODOLOGY 

A. Vesselness in the Frequency Domain 

In previous work, rectangular, Gaussian, and difference-

of-dual Gaussian functions were often used to characterise 

vessel cross-sectional profiles extracted from retinal images. 

Let us examine the Fourier transforms of these three 

functions. We can readily see that the middle points (medial 

nodes) of these functions are indicated by the local extreme 

(maximum or minimum) magnitudes in the frequency 

domain respectively, while the middle point of a rectangular 

function cannot be identified from its local intensity 

information. More interestingly, the Fourier phases localised 

at their middle points are piecewise constant, where the two 

constant values are zero and . It is therefore a natural 

choice to use phase information to determine the ridge of 

vessels. 

Specifically, the Fourier series expansion of  is 

 where  is the phase offset of 

the n-th component of the expansion, and  is the 

amplitude. Consider that the phase is zero or  for all 

frequency components contained within it. We define a 

measure of vesselness as follows: 

      (1) 

where  is piecewise constant (  or ) at the point (

) being considered. The symbol  denotes that the 

enclosed quantity is equal to itself when its value is positive, 

and zero otherwise. This function gives a normalised 
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measure of vesselness, so as to be invariant to the magnitude 

of the signal . Also, it can be viewed as calculating the 

alignment degree of the phases of all frequency components 

with ,  for a downward signal and  for 

upward. In the presence of central light reflection, a cross-

sectional profile still has a real even transform, and local 

high alignment degree is expected to remain unchanged. 

  

B. Scale Invariance of Vessel Cross-Sectional Profile 

A common method for extracting amplitude and phase 

data of a signal is via wavelets by convolving the signal with 

a quadrature pair of filters, e.g. log-Gabor filters in 

symmetric and anti-symmetric pairs. Let us review how the 

phase of a one-dimensional (1-D) signal evolves across 

scales in the wavelet domain. The wavelets constitute a 

family of functions derived from a mother wavelet by 

dilations and translations 

       

where  is a scale factor,  is a translation factor, 

and  is a mother wavelet. The mother wavelet may be 

written as a modulation of a low-pass filter : 

, where  is the centre frequency of the 

modulated band-pass filter, and  is a slowly varying 

and symmetric function. Given a real 1-D signal , the 

wavelet transform of the signal can be written as 

       

      (2) 

where  and  are the Fourier transforms of  

and  respectively. Assuming that the signal  

being analysed is localised near the position , we rewrite 

the signal into a function  that satisfies 

. Using Fourier shifting and scaling 

properties, we can rewrite (2) as 

   (3) 

where  is the Fourier transform of . If  is 

scale-invariant at , we have 

      (4) 

where  is a real function of only , and is 

independent of . Combining (2) and (3), we obtain 

       

The phase can then be expressed as 

      (5) 

Our analysis shows that the phases of all Fourier 

components contained in the signal  are aligned at  

if   is scale-invariant. 

Recall that the distribution is modelled as rectangular, 

Gaussian, or difference-of-dual Gaussians. Apparently the 

Fourier transform of any profile satisfies (4) having the 

scale-invariant property. This allows vesselness to be 

measured by assessing phase alignment with zero or .  

However, it is necessary to preserve vessel boundary 

evidence. Consider that the Fourier transform of a Heaviside 

step function satisfies (4). The corresponding phase at the 

half height (i.e., the vessel boundary) is expected to be 

aligned with .  

C. Implementation of Scale-invariant Vessel Filtering 

The Kovesi phase congruency model of feature detection 

is a computationally efficient implementation of defining 

phase congruency on 2-D images, and incorporated by a 

simple and adaptive noise resistance algorithm [8]. We 

utilise the Kovesi phase congruency function  to 

calculate phase alignment degree on 2-D images. 

Specifically, vesselness at   is measured by 

                  (6) 

where  for upward profile curve, and  for 

downward. Similarly, vessel boundary is measured by 

                  (7) 

where  for a rising boundary; and  for a 

falling boundary. 

In scale space, the number of features reduces as the filter 

scale increases. It is necessary to choose appropriate filtering 

scales which are large enough to detect the vessel boundary, 

and small enough to avoid the merging of pairs of 

boundaries. Even if in a scale two boundaries start merging 

(the phases of the boundaries start drifting towards each 

other), local symmetry between the boundaries is expected 

to retain. Provided that the scale of filter is reasonable for 

boundary detection, localisation of vesselness is preserved. 

The filter parameters of log-Gabor filters used in the 

Kovesi phase congruency model have been experimentally 

set with respect to the significance of composite features 

including step and ramp changes. Since a half-height feature 

is around the centre of a step or a ramp, it is reasonable to 

start from the filter settings as in [8] [9]. The feature 

significance functions (6) and (7) are applied on data from 

oriented 2-D log-Gabor wavelets. In our experience, we 

have found that six orientations with four resolution levels 

(scales) increasing the wavelength by 0.2 octaves, provided 

a good compromise between computational expense and 

accuracy of experimental results. 

D. Extraction of Optimal Medial and Boundary Paths 

We adopted the optimal medial axis skeletonisation 

scheme as in [7] to simultaneously extract medials and 

boundary points of vessels with radii down to half pixel. In 

the medial axis skeletonisation scheme, the medial path of a 
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vessel is defined as the set of centres (medial nodes) of the 

maximal inscribed circles inside the vessel, denoted as the 

optimal spatial coordinates  and radius values  

between two-sided boundary in 3-D space . The 

optimisation is achieved by minimising a cumulative cost 

function at each node, which describes the cost from node 

 to a neighbouring node . 

To adapt the above scheme, we replaced its ridge 

detection and edge detection components with the measures 

of vesselness and vessel boundary, respectively. The cost 

function that describes the cost from node  to a 

neighbouring node  is defined by: 

 (8) 

where  corresponds to the measure of vesselness (5); 

 refers to the vessel direction change between   and 

; and  is a measure of the fitness of a medial node by 

assessing the boundary evidence of equidistant positions on 

either side. Each cost term is a normalised quantity with  

values in [0; 1]. For our experiments, we set the coefficients 

, , and  to 1.0. 

III. EXPERIMENTAL RESULTS 

A cropped original colour fundus image for illustrative 

purpose is given in Fig. 1(a), and the results of measuring 

asymmetry and symmetry are given in Figs. 1(b) and 1(c) 

respectively. The central light reflex is obvious on some 

vessel segments in the original image. The green component 

of the colour image was used only since this component 

provides the highest object contrast. From the results we 

readily observe that high asymmetry and symmetry of local 

Fourier components highlight the boundary and the inner 

part of the vessel segments, respectively. The response of the 

measure of asymmetry on two-sided boundary appears to be 

invariant to the presence of the central light reflex. Indeed, 

high asymmetry is also found on the effect of spurious noise. 

For the purpose of comparison, a Sobel operator was applied 

to the same image, and the corresponding filtered image is 

given in Fig. 1(d). Clearly, the response of the operator on 

two-sided boundary varies considerably, making it difficult 

to predefine appropriate threshold values for vessel edge 

detection. This problem is common to edge detectors based 

on differential operators. Comparing the filtered image with 

the asymmetry image, we may conclude that the proposed 

algorithm achieves significant improvement compared to 

other edge-based algorithms in alleviating the central light 

reflex problem. 

Also, we performed a width measurement study on the 

results obtained from the ARIA dataset to illustrate the 

performance of the proposed algorithm. A total of 191 

segments inside a ring-shaped zone with 70 pixels in 

diameter (see Zone B in Fig. 2) were selected from different 

images of the dataset. Given a pixel of a selected segment, 

we were able to extract a cross-section normal to the vessel 

axis (medial path), and compute an optimal vessel radius (or 

width) value. For the purpose of comparison, we 

implemented the HHFW (half-height-full-width) method, 

and the generalised Gaussian profile modelling as used in 

[10] and [11], to compute estimated width values on the 

extracted cross-section. Fitting the generalised model of 

two-Gaussians to a cross-section of intensities was 

performed by means of the Levenberg-Merquardt least 

squares method, to obtain a set of model parameters 

characterizing the vessel. Then the vessel width value was 

estimated to be equal to 3.26  of the best fit. The median of 

five width values estimated for a selected pixel was taken to 

exclude outliers. 

 

 (a) 

 (b) 

 (c) 

 (d) 

 
Fig. 1.  Results of measuring asymmetry and symmetry on a colour fundus 

image: (a) the original image; (b) asymmetry image; (c) symmetry image; 

and (d) edge detection by using Sobel operator. The value at each location 

of the asymmetry and symmetry images is in the range [0, 1]. 

  

On all segments, the width estimates produced by the 

methods were recorded and used in subsequent analysis. 

Quantitative agreement between our width measurements 

and the HHFW values and between the generalised profile 

modelling measurements and the HHFW values 

respectively, is illustrated as a Bland-Altman plot in Fig. 3,  
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allowing the degree of variation present to be objectively 

analysed. Note that on 43 cases the experimental results 

produced by the generalised profile modelling were not 

recorded in Fig. 2(b) since finding the best fit was difficult, 

particularly on thin vessels. We can see that in comparison 

with the HHFW values, the width estimates computed using 

the detection method in the enhanced form show less scatter 

than those using the generalised profile modelling. 

Systematic differences appear between the set of HHFW 

values and the set of our measurements implying the 

comparability of the HHFW and our algorithm. 

 

 
 

Fig. 2.  Zone B in an experimental image. The zone has a diameter of 70 

pixels surrounding the optic disk. 

 

 

 (a) 
 

 (b) 

 
Fig. 3.  Bland-Altman plot of width differences: (a) between the HHFW 

measurements and our measurements against the average of the two 

measurements; and (b) between the HHFW measurements and the 

generalised profile modelling measurements against the average of the two 

measurements. 

IV. DISCUSSION 

We have presented a new approach of vessel detection on 

retinal images. The main contributions of this work are (i) to 

define a universal representation of vessel cross-sectional 

profiles in the Fourier domain, and (ii) to utilise phase 

congruency to characterise this representation. The proposed 

Fourier profile accommodates for upward and downward 

cross-sectional profiles with varying sharpness, and takes 

into account the vessel inner part which is blurred in some 

cases. Thanks to phase congruency our approach is invariant 

to brightness variations of the vessel. 

A distinct advantage of the new approach is that it is 

effective even in the presence of thin and thick vessels. The 

algorithm is beneficial to detection and analysis in more 

advanced retinopathy where high-resolution retinal images 

are acquired. An important aspect of our approach is that it 

is effective with little operator intervention. This makes the 

algorithm attractive to detection and analysis on images of 

several types or image sequences. In contrast, existing 

methodologies are ineffective in the presence of a wide 

range of vessels, and may require choosing optimal 

parameter values or choosing a combination of predefined 

profile models. We conclude by stating that the new 

approach is promising for automated vessel detection where 

optimising profile models is difficult and preserving vessel 

width information is necessary. 
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