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Abstract— Vessel segmentation on ultra-wide field-of-view
fluorescein angiogram sequences of the retina is a challeng-
ing problem. Vessel appearance undergoes severe changes, as
different portions of the vascular structure become perfused in
different frames. This paper presents a method for segmenting
vessels in such sequences using steerable filters and automatic
thresholding. We introduce a penalization stage on regions with
high vessel response in the filtered image, improving the detec-
tion of peripheral vessels and reducing false positives around
the optic disc and in regions of choroidal vessels and lesions.
Quantitative results are provided, in which the penalization
stage improves the segmentation precision segmentation by
11.84%, the recall by 12.98% and the accuracy by 0.40%. To
facilitate further evaluation, usage, and algorithm comparison,
the algorithm, the data set used, the ground truth, and the
results are made available on the internet.

I. INTRODUCTION

This paper presents a vessel segmentation algorithm
for ultra-wide-field-of-view (UWFV) fluorescein angiograms
(FA) sequences of the retina, based on the enhancement of
ridge-like structures, penalization of areas with high vessel
response and automatic thresholding for the final binariza-
tion.

Recent developments of scanning laser ophthalmoscopes
(SLO) have made UWFV angiographic images possible,
providing a new method to visualize up to 200◦ of the
retina (conventional fundus cameras afford a field of view of
about 30◦ − 50◦). This technology is becoming increasingly
common and improving constantly [1]. Recent publications
have clearly demonstrated that UWFV angiography provides
visualization of peripheral retinal lesions and is useful in
their evaluation and treatment [2].

FA sequences involve the intravenous administration of a
fluorescein dye. Different portions of the vasculature become
visible at different times, as the dye passes through the
vascular system. Figure 1 shows frames from the 4 stages
of a FA sequence: arterial, arterio-venous, venous and late
venous. Sequence frames are not registered due to head and
eye movements and mobile hardware components.

Numerous methods have been published on retinal vessel
segmentation. The majority of methods focus on fundus
images [3], [4], and only a few seem to have targeted
FA [5], [6]. To the authors best knowledge, only a small
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Fig. 1: Four frames corresponding to the 4 phases of a UWFV FA
angiogram, showing up to 200◦ of the retina: (a) Arterial phase. (b) Arterio-
venous phase. (c) Venous phase. (d) Late venous phase. (See high resolution
images at http://vampire.computing.dundee.ac.uk)

number of simple techniques have been reported to extract
vessel structures from UWFV FA sequences [7], [8], and
no specialized vessel segmentation system for UWFV FA
images has been evaluated quantitatively.

Segmentation of UFWV FA images present various pe-
culiarities. The main challenge is that, as the contrast dye
perfuses the retina, different segments of the vasculature ap-
pear, so that the image content varies constantly. Occlusions
due to eyelashes and eyelids may occur, as seen in Figure 1;
some lesions might resemble vessels, creating false positives;
and peripheral vessels often appear distorted and blurred.

The main contribution of this paper is the addition of
a penalization step, run after vessel enhancement using
steerable filters, in order to improve the segmentation of
peripheral vessels and reduce the false positives on the region
around the optic disc, choroidal circulation and lesion areas.

This paper is organized as follows: Section II describes
our system. Section III detail the quantitative results of the
segmentation. Finally, Section IV presents the discussion,
conclusions and future work. All the material presented in
this paper (an implementation of the algorithm, original
images, ground truth and results) are publicly available at
http://vampire.computing.dundee.ac.uk.
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Fig. 2: Overview of the vessel segmentation system on UWFV FA images.

II. METHODOLOGY

A. Overview

Our system relies on 2-D steerable filters with closed-
form expressions to detect ridges or edges on gray-scale
images [9]. After enhancing tube-like structures, we add a
penalization for areas with numerous strong responses in the
enhanced image, in order to promote the extraction of iso-
lated vessels in the periphery. Finally, automatic thresholding
is applied by modeling the stability of the number of regions
[10]. Figure 2 shows an overview of the system.

B. Image filtering with steerable filters

We use the implementation by Jacob et al. [9] in order
to enhance the vessels in UWFV FA frames. The method
is a general approach to 2D feature detection. A class of
steerable functions is obtained from the optimization of a
Canny-like criterion. The ridge detector is a re-interpretation
of the ridge estimator based on the eigendecomposition of
the Hessian matrix in terms of steerable filters. We use the
second set of parameters suggested by Jacob et al. for the
4th-order filter to enhance ridges, only adjusting σ = δ/35,
where δ denotes the optic disc diameter. Vessel width in the
retina are proportional to the optic disc diameter, and optic
disc diameter is a near-constant measurement that can be
easily obtained and used to tune the algorithm to images of
different resolutions and fields of view.

Figure 3b shows an example of the response of a UWFV
FA image to the steerable filter. The original image (Figure
1c) shows the optic disc in the centre, with the vasculature
network emerging from it in a tree-like structure. A large
white occlusion produced by the inferior eyelid and eyelashes
is clearly visible at the bottom. A neovascularization lesion
is visible above the macula (left of the optic disc). Notice
the high density of enhanced vessels within this lesion and
in the region surrounding the optic disc.

C. Penalization of high response areas

Detailed examination of UWFV FA images shows that
peripheral vessels appear blurred, with weaker responses in

the filtered image. At the same time, vessels around the
optic disc have a stronger response as they appear more
contrasted. Regions presenting choroidal circulation regions,
and lesions with ridge-like textures (as the one present in
the AMD sequence), present numerous pixels with relatively
strong responses. Therefore, if a global threshold is applied,
peripheral vessels might not have a strong enough response to
be considered vessels and false positives can emerge around
lesions, regions with choroidal circulation and around the
optic disc, as shown in Figure 5b.

Consequently we decided to penalize regions with strong
responses to promote the extraction of isolated vessels in
the periphery and reduce false positives in noisy parts of
the images. Somehow, this process can be regarded as a
penalization of regions with high density of vessels with
strong responses (i.e., around the optic disc, and thicker
vessels), as shown in Figure 3, while promoting isolated
vessels on the periphery.

In order to implement this idea, the response image
obtained after applying the steerable filter, denoted as E,
is smoothed using a δ× δ Gaussian window with a standard
deviation of 2.5 pixels. The resulting image, Es, highlights
the regions with numerous strong responses (corresponding
mainly to the optic disc and lesions). The penalized response
image, Ep, is then computed as Ep = E − Es.

(a)

(b) (c)

Fig. 3: (a) High vessel response areas, Es. (b) Response to the
steerable filter before penalization, E. (c) Response to the steer-
able filter after penalization, Ep. (See high resolution images at
http://vampire.computing.dundee.ac.uk)

D. Automatic thresholding
We now binarize Ep to achieve the vasculature map. We

implemented an automatic global threshold algorithm based
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Fig. 4: Automatic threshold detection: Threshold values ti on the x-axis
and number of regions in b(Ep, ti) on the y-axis. The green asterisk is the
further point from the straight line between ti and tI corresponding to the
threshold value of 1.6× 10−4.

on the spatial distribution of the signal [10]. The location,
size and number of vessel regions are unknown, but we
expect that the application of increasingly higher thresholds
will reduce progressively the number of regions. Specifically,
at low threshold values there will be many disconnected
regions caused mainly by noise; for increasing threshold
values the number of regions will decrease. Moreover, high
threshold values will yield fewer regions and the number of
regions will be stable, dropping at a small rate. Consequently,
the optimal threshold can be obtained by locating the interval
of threshold values in which the number of regions stops
decreasing fast and stabilizes.

Given this, we obtain a binary segmentation, Bi, from the
penalized response image Ep using Equation (1).

Bi = b(Ep, ti), (1)

where ti is the i-th threshold used and i = [1, . . . , I] with
I = 51. We set t1 = 0 and tI = 10−3. All ti with 1 < i < I
are evenly distributed between the minimum and maximum
thresholds at steps of 2×10−5. b(Ep, ti) is the function that
binarizes Ep using the global threshold ti: any pixel in Ep

with a value greater than ti will be 1, and 0 otherwise.
In order to select the optimum ti we model b(ti) as an

exponential decay (Figure 4). As predicted, the number of
regions drop rapidly at low threshold values, caused by the
many, noisy, disconnected regions. At high threshold values
the number of regions becomes stable, decreasing at a slow
rate. As suggested by Rosin et al. [10], a suitable partition
point between the signal and noise is the “corner”of the
curve, defined as the point of the curve with maximum
deviation from the straight line between ti and tI , the s of
the curve, Figure (4).

III. RESULTS

In our experiments we used UWFV FA sequences of
3900 × 3072 frames acquired with an OPTOS P200C ma-
chine, courtesy of OPTOS plc [1]. The sequences contain
between 10 and 15 frames acquired at irregular time inter-
vals, capturing 200◦ of the retina. The data used includes

TABLE I: Experimental results

With penalization Without penalization
Frame Pr Rc Ac Pr Rc Ac

AMD1 0.4250 0.6940 0.9922 0.3786 0.6600 0.9911
AMD2 0.6007 0.7499 0.9813 0.5234 0.7369 0.9766
AMD3 0.7120 0.6681 0.9720 0.6567 0.5499 0.9657
AMD4 0.5886 0.3805 0.9690 0.4772 0.3280 0.9639
GER1 0.5769 0.6432 0.9930 0.5375 0.6424 0.9923
GER2 0.7450 0.5465 0.9721 0.6393 0.5550 0.9670
GER3 0.6929 0.4771 0.9540 0.6598 0.3443 0.9478
GER4 0.7157 0.5113 0.9773 0.6792 0.4919 0.9757

All 0.6649 0.5510 0.9764 0.5945 0.4877 0.9725

two sequences: the AMD sequence shows a retina with age-
related macula degeneration; the GER sequence shows a
healthy retina.

A close inspection of the segmentation (Figure 5) shows
that the use of penalization of high response areas on the
filtered image improves the segmentation, reducing notably
the false positives in the central areas and segmenting a
bigger portion of the vascular structure in the periphery.
The binary mask computed without the penalization of high
response areas shows artifacts around the main vessels.
While the segmentation using density penalization shows
fewer artifacts in the central part of the image, it still presents
a large number of false positives in the part of the image
corresponding to the eyelashes or eyelids skin, a region of
the image of no clinical interest.

To evaluate quantitatively the segmentation results, one
frame characteristic of each phase has been selected by the
clinical author (JPH) in each sequence, giving a total of 8
frames. Binary vessel masks have been manually obtained
from these frames (Figure 5a) to provide ground truth.

To measure the performance of our system, we use Preci-
sion (Pr), the fraction of correctly classified pixels as vessel
among all the pixels classified as vessel; Recall (Rc), the
fraction of correctly classified pixels as vessel among all
the pixels that actually are vessel; and Accuracy (Ac), the
portion of correctly classified pixels. The system achieves a
precision of 0.6649, a recall of 0.5510 and an accuracy of
0.9764. Table I also shows the precision, recall and accuracy
for each individual frame.

We repeated the experiments removing the penalization
step, i.e., the binary segmentation is obtained by applying
automatic thresholding directly on the response of the steer-
able filters. In this case, the precision decreases to 0.5945,
the recall to 0.4877 and the accuracy to 0.9725. (Table I).
The use of the penalization step increases the precision by
11.84%, the recall by 12.98% and the accuracy by 0.40%.

To study performance as a function of location, we com-
puted precision, recall and accuracy in 6 different areas of
the image. Region 1 is centered in the optic disc and has
a radius of 300 pixels. Region 2 is a 200 pixels wide ring
surrounding region 1. Region 3 to 6 are the subsequent 200
pixel wide rings. As a reference, the optic disc diameter in
our data set is about 200 pixels. As seen in Figure 6, the use
of a penalization step for areas with high vessel response
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(a) (b) (c)

Fig. 5: (a) Ground truth for AMD2 (See figure 1b). (b) Vessel segmentation without the penalization step. (c) Vessel segmentation of our system. (See
high resolution images at http://vampire.computing.dundee.ac.uk)

Fig. 6: Evaluation of the precision, recall and accuracy of the system
at different regions for the 8 images. NP denotes the system without
penalization of areas with high vesselness response.

increases the precision and accuracy of the system on the
periphery and especially on the optic disc region and its
surroundings (Regions 1, 2 and 3). It can be also observed
that, without the penalization step, recall is much higher and
precision lower in the regions close to the optic disc (1 and
2). This is because the system incorrectly considers most
of the region as vessel (Figure 5b), forcing precision and
accuracy to drop and recall to increase. In the periphery,
the system with area penalization yields an increment on
precision, recall and accuracy, indicating that more vessels
are located correctly in those regions without generating a
higher number of false positives.

The entire vessel segmentation process takes around 15
seconds on a Intel Core 2 Quad Q9400 at 2.67Ghz with
4GB of RAM.

IV. DISCUSSION, CONCLUSIONS AND FUTURE WORK

We have presented a system for locating vessels in UWFV
FA frames based on the steerable filters and automatic
thresholding. We have introduced a penalization step for
regions with high vessel response to promote the extraction
of peripheral vessels and at the same time increase the
precision of the overall segmentation.

Our data and method are publicly available to facilitate fur-
ther evaluation and comparisons and encourage the research
on retinal image processing on UFWV FA sequences.

It is important to stress that recall, precision and accuracy
are area measures, as they count the pixels and not the
length of the vasculature network extracted (i.e. the number
of vessels extracted). For instance, an algorithm that only
detects the main vessels may yield a higher number of
true positives than an algorithm that detects many thin
vessels, as the area of thick vessels may be 4-5 times larger.
Consequently, we plan further research on the use of non-
area related metrics to evaluate better the quality of vessel
segmentations.
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