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Abstract— We discuss the problem of 2D+t intra- and
inter-sequential registration of retinal angiograms. A joint
spatio-temporal registration algorithm is presented based on
a RANSAC (RANdom SAmple Consensus) approach incor-
porating a quadratic model to describe “pairwise” image
homography. This is incorporated into a local-to-global hier-
archical joint registration framework. After registration, vessel
centrelines are segmented to subpixel accuracy by applying
multi-scale steerable complex wavelet filters. Frame-by-frame
microvascular centrelines in Regions-of-Interest (ROIs) are
evaluated against segmented centrelines of the temporal average
of the registered sequences. The microvascular centrelines in
registered sequences can be compared intra-sequentially and
inter-sequentially, allowing non-invasive clinical monitoring of
micro-circulation. This has the potential to detect the presence
of microemboli and pathological structural alterations.

I. INTRODUCTION
The retinal vascular system has spawned a wide range of

clinical and pre-clinical research and diagnostic techniques
since it provides unique in vivo access for studying the
characteristics of the human vascular bed in a minimally
invasive manner.

Fluorescein angiography is a well-established technique
for clinical assessment of the retina. The passage of flu-
orescein dye through the retinal vessels reflects both the
vessel structure and the rate of retinal blood flow. A fundus
camera continuously photographs the retina from the onset
of dye injection over a period of 3 to 5 minutes [1]. This
captures filling (“wash-in”) and the subsequent elimination
(“wash-out”) of dye in the retinal vessels. These angiogram
sequences are roughly divided into the arterial phase (filling
of retinal arteries), arteriovenous phase (complete filling
of retinal capillaries with laminar flow exhibited in retinal
veins), venous phase (complete filling in large retinal veins,
leading to the maximum vessel fluorescence) and recircula-
tion phase (approximately equal brightness in the veins and
the arteries, with gradual elimination of dye from the retinal
vasculature).

Measurements on retinal blood vessels have linked alter-
ation of human (retinal) vasculature with diseases such as
hypertension, diabetes and age-related macular degeneration
[2]. For early stage detection, subtle changes in the retinal
microvasculature require sufficiently fine-resolution imaging
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and dependable sub-pixel precision of registration to study
vessels at the micrometer scale. Current literature focuses
on establishing correspondence between global microvas-
culature measures and retinal blood flow [3]. Suggested
parameters are blood flow velocity, arteriovenous passage
time, difference of arterial and venous times to maximum
intensity, and time to maximum image [3]. All of these fail
to capture microvascular vessels individually.

Blauth et al [4] first suggested that comparison of pre- and
post- operative retinal fluorescein angiograms might indicate
the existence of microemboli that could be associated with
cognitive impairment or even morbidity. However, only the
macula region of one pre-op and one post-op image were
used [4].

The analysis of sequential retinal angiograms has not been
widely exploited; the dynamics of blood flow and the diffu-
sion of the injected tracer introduce a low-frequency variation
that is both difficult to compensate for and computationally
demanding. However, fluorescein angiography allows visual-
isation of the microvasculature less than 30µm in diameter,
which is not yet achievable by either funduscopy or color
photography. By recruiting all frames in both sequences, it
is possible to study retinal microvasculature dynamics and
identify small, but potentially significant embolic events. In
this paper, we address and solve three technical problems.

1) Image registration: We need to estimate and model the
distortion between frames in order to map each angiogram
onto one common coordinate system (the reference). Current
feature-based methods include global weak affine model with
Bayesian matching [5], hierarchical model refinement [6] and
dual-bootstrap iterative closest point (DB-ICP) [7]. Often,
vascular bifurcation points are extracted as landmark points
to estimate the transformation model. Inaccurate landmarks
can heavily distort the transformation estimate, especially in
[6], where each image only contains about 30-50 landmarks.
This is improved in [7], where landmarks in local “bootstrap”
regions are iterated to establish correspondence and to fit and
refine the transformation estimate. This method also relies on
the accurate initialization of corresponding landmark points.

2) Objective validation: We need an objective error mea-
sure to evaluate the performance of our registration algo-
rithm. Registration error can be determined by the extent of
misalignment between the registered image and the reference
image. Conventional ground truth is obtained from manual
registration [5]. This form of reference standard is subject
to inter- and intra-observer variability. Therefore, [6]&[7]
use the “centreline” (linked lines between landmarks) loca-
tions of the original images as relatively “unbiased” ground
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truth. However, both the linking algorithm that interpolates
subpixel locations and the similarity measure that optimally
matches subpixels between different frames vary from case
to case in establishing error metrics. Therefore, [8] casts
an evenly spaced virtual grid that intersects with vessels
to obtain ground-truth pixels. This, however, disregards the
location-dependent nature of pixel information. Pixels lo-
cated near the capillary-rich macula region generate signifi-
cantly more clinical interest than those near the retinal border
(field-stop). Furthermore, their proposed “error tracing” route
[8] theoretically favors strategies that pair both the forward
and the inverse registration functions to optimize the “net
offset” rather than a true assessment of the registration
algorithm on its own. Additional processing is required to
address the uneven global illumination.

3) Vessel segmentation: We need to differentiate and
identify microvascular segments from the background in each
of our angiograms. Extensive research focused on this area
includes: use of morphology with Laplacian-of-Gaussian
filtering [5], exploratory vessel tracing [6], region-growing
on Hessian matrix maxima in scale-space [9] and maximum
likelihood estimates from multi-scale filter outputs in scale-
space [10]. Yet, most algorithms are developed on fundus
images, and are not necessarily able to capture capillaries in
fluorescein images at a much finer scale.

II. METHODS
A. Pairwise Registration

Geometric distortion, radiometric degradation, and addi-
tive noise corruption contribute to the difficulty in reg-
istration. Problems specific to clinical retinal angiography
are: the photographer’s bias in image capture, the patient’s
involuntary movement, and the 3D to 2D warping between
retina and the camera. Existing techniques, for example,
approximate the retinal surface by a sphere [6], predict a
perspective distortion [8], or model the intensity variation to
address uneven illumination [11].

At the pairwise level, we combine projective RANSAC
[12] with a quadratic homography transformation, pre-
conditioned by contrast-enhancement within the field-stop.
The latter is required because the low dye concentration in
the retinal blood vessels both at the beginning and the end of
the sequence requires temporary adjustment of the dynamic
range of pixel intensities. To disregard the edge of the frame
and the patient record information, a circular Hough Trans-
form is used to detect the field stop. Local contrast within
the field-stop is histogram equalized and vessel bifurcations
or crossings (landmarks) are selected based on Harris corner
measure. False corners near the borders are eliminated with
a distance criterion. Landmarks are then putatively matched
by windowed normalized cross-correlation. RANSAC itera-
tively estimates the “best-fit” projective model applicable to
most putative matches. We use the inliers-to-outliers ratio
(the comparison between the number of pairs that can be
described by the “best-fit” model within an offset threshold
and those that cannot) as a criterion on whether to apply a
higher order quadratic transformation model (with 12 degrees

of freedom). Although the quadratic model is more tolerant
to pairwise distortion, the refinement is only sensible if the
lower order registration has been successful.

B. Joint Registration

To analyse temporal information both within a consec-
utive sequence of retinal angiograms (intra-sequence) and
across two different sequences taken before and after the
operation (inter-sequence), we need a stepwise systematic
framework that first aligns each pixel intra-sequentially then
cross-aligns the same pixel inter-sequentially. Multi-temporal
registration requires maximizing the point correspondence
between similar structural features, while still allowing us
to differentiate, detect or even monitor pathological changes.
For each patient, the last post-op frame was acquired several
hours after the first pre-op frame. This increases the chance
that the vasculature alters either in width or in curvature, in
addition to the natural variability of blood vessels.

For the nth frame in a sequence S of length N , let (xn, yn)
denote the location of each pixel in the frame coordinates at
time tn. The image is denoted by the function:

fn := fn(xn, yn; tn), n ∈ [1, N ] (1)
Consider two unregistered angiogram sequences, acquired

with frame-specific spatial coordinates relative to the camera
lens, at unknown points in time relative to the cardiac cycle,
and with non-uniform frame-to-frame intervals (from less
than a second to tens of seconds) along each sequence:

S(A) =
{
f (A)
n

}
n=1,2,3...NA

and S(B) =
{
f (B)
n

}
n=1,2,3...NB

We first spatially register each individual image f (A)
n in

S(A) to a local reference spatial coordinate system defined by
frame f (A)

lr . This individual-to-local reference registration
is also applied to sequence S(B) with frame f (B)

lr as its local
reference. We then register the two local references f

(A)
lr

and f (B)
lr separately to one global reference fgr. This local-

to-global reference transformation is further combined with
prior individual-to-local reference transformations to give the
individual-to-global reference transformation that allows
S(A) and S(B) to co-register to one global reference fgr.

We adopt the clinical practice of selecting the darkest
image as the local reference. Our algorithm computes the
sum of the pixel intensities within the field-stop and selects
the frame at the peak of the dye-time course (when the image
is the darkest) in each sequence:

flr = {fn∗}, n∗ = arg min
n∈[1,N ]

〈fn,Mn〉 (2)

with 〈·, ·〉 denoting a spatial inner product and Mn a spatial
weighting function (binary mask) that is unity for points
(xn, yn) within the field-stop region and 0 outside.

The individual-to-local reference registration is given as:

f ′n := f ′n(x′(lr), y
′
(lr); tn) = Rn(lr)(fn), n ∈ [1, N ] (3)

where individual frame fn is mapped to the spatial coordi-
nate system of local reference flr by function Rn(lr).

The local-to-global reference transformation is given as:

f ′lr := f ′lr(x
′
(gr), y

′
(gr); tlr) = Rlr(gr)(flr) (4)
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where the local reference flr is mapped to the spatial coor-
dinate system of global reference fgr by function Rlr(gr).

Lastly, the individual-to-global reference registration can
be combined as:
f ′′n := f ′′n (x′′(gr), y

′′
(gr); tn) = Rlr(gr)(f

′
n), n ∈ [1, N ] (5)

where individual frame fn is mapped to the spatial coordi-
nate system of the global reference fgr.

C. Vessel Segmentation

The estimate for the centreline location of the vessels
requires subpixel resolution accuracy. In practice, fine ves-
sel structures may not be captured in all frames within
a sequence. It is commonly observed that capillaries may
“disappear” from the previous frame then “re-emerge” in
the following one. Lastly, due to the time delay in the
passage of dye, angiograms at the beginning and the end
of a sequence reveal significantly less information on the
detailed microvasculature.

The temporal average of the registered sequence(s) is
a more perceptually accurate representation of the retinal
microvasculature as it takes into account previous and sub-
sequent frames in one or more sequences. For globally reg-
istered sequence(s) with N number of frames, {f ′′n}n∈[1,N ],
the temporal average across the sequence(s) is defined as:

faverage =
1

N

N∑
n=1

f ′′n (6)

Fig. 1. Temporal average faverage of registered sequences (pre- and post-
pulmonarycardiac bypass operation) for each patient (a total of 6 patients)

Our segmentation algorithm uses prior work [10], [13] and
[14]. We apply steerable complex wavelet filters at multiple
scales on each frame fn, and use the filter outputs to infer
the presence of vessels and centreline locations.

A local orientation map can be constructed as:

O(l)
n (xn, yn) =

∑K/2−1
k=0 |g(l)k (xn, yn)|ej2φk

p+ (
∑K/2−1
k=0 |g(l)k (xn, yn)|2)

1
2

(7)

for g(l)k (x, y), k = 0, 1, 2, ...,K-1 denotes the output of the
kth order oriented bandpass complex analysis filter from
image fn at level l, and p is a conditioning constant [13].

A local phase estimate, Ψ
(l)
n , is obtained from filer steering

by the polynomial functions sp(φ, k) and sq(φ, k) on fn:

Ψ(l)
n =∠

(K/2−1∑
k=0

sp(φ, k)f
(l)
k (xn, yn)+

K/2−1∑
k=0

sq(φ, k)(f
(l)
k (xn, yn))∗

)

Fig. 2. Orientation dominance field of ROI near macula on an angiogram

For each pixel, we match local orientation O(l)
n (xn, yn)

(Figure 2) with phase estimate Ψ
(l)
n in an 8-connected

neighbourhood. The extracted centreline locations are refined
by the subpixel information held in the phase shift between
pixels. In scale-space, we link and weight the candidate
locations at different scales to filter out the noise.
D. Objective Validation

For the validation, we take a patch (ROI) near the macula
region with a high density of microvasculature. First, we
establish our ground-truth as the centrelines vaverage(x, y)
within the ROI on faverage (Figure 1). Then we segment the
vessel centrelines vn(x, y) (within the same ROI) frame-by-
frame in the co-registered pre- and post-op sequences. For a
given ROI area with vessel length L, we define the centerline
error measurement (CEM) as:

CEM =
1

L

L−1∑
n=0

‖vn(x, y)− vaverage(x, y)‖ (8)

where ‖ · ‖ is the Euclidean distance. This is a fairer
assessment of registration quality as the clinically interesting
fine-scale microvasculatures contribute more strongly to the
error metric than a spatially-averaged global measure.

III. EXPERIMENTS

We tested our proposed method on 384 retinal angiograms
(4288-by-2848 pixels per frame, captured by a Zeiss retinal
camera at 30 degrees field) from 6 patients. Each patient
has one pre-op and one post-op sequence, with ∼65 frames
per sequence. We processed our sequences using MATLAB
2009 on an Intel Dual Core CPU with 3.48G RAM. Our
segmentation evaluation used ROIs of size 101×101 pixels
near the macula containing complex image structures, and
with clearly displayed capillaries ranging from 5-10 pixels
in width. We compared our algorithm with an affine model,
that accounts for pairwise rotation, scale, translation and
shearing. The validation and segmentation procedures were
controlled, so the same ROIs were used in both models. Both
algorithms ran on the same machine, and both algorithms
used the same local and global references to give a fair
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comparison. Figure 3 presents the comparison results of
centreline error measure (CEM) between the outputs of the
two algorithms. For fine structures, the affine model has on
average 2-3 pixel misalignments and large error bars, up to
13-14 pixels. Our model, on the other hand, has a much more
stable performance at 0.1-0.15 averaged pixel misalignment
and no more than 0.3 pixel in all registered frames.

Fig. 3. Top: CEM of registered sequences per patient from our algorithm;
Bottom: CEM of registered sequences per patient using affine model. Note
the different scales.

IV. CONCLUSIONS
In this paper, we first suggested a novel joint registration

procedure with promising results in both the spatial and
temporal domains. We then presented a novel pixel-wise
approach for centreline segmentation without thresholding or
region-growing, which is used for evaluation of registration
accuracy. This allows comparison and non-invasive monitor-
ing of fine-resolution microvasculature from an existing well-
established technique. It provides the potential for detecting
temporal changes in the circulation (possibly caused by
microembolism, see Figure 4) in real-time. This allows
early preventative measures to be taken to reduce aggra-
vated blood-clotting, thus improving patient’s post-operative
recovery. Future development includes extensive validation,
real-time performance evaluation and clinical trials.
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