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Abstract— An extended registration framework is presented
to accurately register follow-up PET-CT study triples. Since
there are six images to register, sophisticated feature extraction
and similarity measurement methods are proposed. An irreg-
ular sampling method is introduced to decrease the processing
speed of the hextuple registration. The similarity measurement
is based on a normalized hybrid extended SSD (Sum of Squared
Differences) and and extended NMI (Normalized mutual In-
formation). The method has been tested on a huge amount
of simulated data to avoid observer specific results. Based on
the validation, our method outperforms prior solutions in both
speed and accuracy, hence it should be the subject of further
investigations.

I. INTRODUCTION

Positron Emission Tomography (PET) and Computed To-

mography (CT) combined together bring great benefits for

nuclear medicine physicians working in the field of oncology

[1], [2], [3]. One of the most common related procedures is

the detection of Hodgkin’s lymphomas on PET-CT images

acquired by a hybrid camera [2], [3]. Generally the first

interim PET-CT study is followed by two follow-up PET-CT

study pairs representing the stages of the patient after therapy

[3], [4], [5], hence overall six images need to be processed.

For the accurate comparison of these studies their spatial

alignment is essential. Since lymph nodes are typically small

and their size/uptake changes must be followed over the

study pairs, the transformation applied to the follow-up

studies must preserve the features of them. Hence non-linear

distortions are not desired for these kind of images [4], [5].

The common way of evaluation is performed by placing

VOIs (Volume of Interests) over the corresponding lym-

phomas. This step requires the presence of an experienced

physician hence it is perfromed manually. Although a rigid

transformation cannot eliminate all local misalignments, it

is a great help for physicians to identify corresponding

lymphomas by bringing them as near as possible.

The number of images makes it challenging to accurately

register the studies. Prior solutions have shown that the

global optima among more than two images can be achieved

if all similar images are involved in the registration [5], [6].

Nevertheless the increasing number of images changes the

way of calculating the similarity as well. There are several

widely applied similarity measurements for both mono -

and multi-modal cases. In prior works the Sum of Squared
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Differences (SSD) has been successfully applied between

CT images [7], [8]. Other works proposed the usage of the

Normalized Mutual Information (NMI) for both mono - and

multi-modal cases [9], [10], [11].

In spite of the above conclusions there is still a lack of

general knowledge regarding the optimal feature extraction

and similarity measurement when more than two images

need to be superimposed. The increasing number of images

requires more computation for the registration, hence there

are key factors that need to be identified: The number of

iterations to superimpose the images is one of the most

important factors to minimize the time of the registration.

Another interesting question arises from the nature of our

current medical data: Since the corresponding PET and CT

images are performed by a hybrid camera, they are already

registered by an intrinsic transformation. Therefore it is not

clear whether all six images or only the subset of them

(only CTs) need to be involved in an extended similarity

measurement.

Our goal was to introduce proper feature extraction and

similarity measurement methods to register PET-CT study

triples and to compare them to prior solutions. We propose an

extended hybrid similarity measurement performed among

all images to achieve the global optimal alignment of them.

The comparison and validation was performed on simulated

data derived from real clinical PET-CT examples to minimize

the possibility of physician specific results.

II. MATERIALS AND METHODS

A. Simulated data

Ten real PET-CT studies were collected representing

the interim stage of Hodgkin’s lymphoma cancer. The CT

Hounsfield values were corrected to remove possible artifacts

caused by earring and implant based on ( 1).

∀v ∈ CT : v = min (max (v,−120) , 3000) (1)

where v ∈ Z was a Hounsfield value in a CT image. Low

and high threshold values were determined based on standard

Hounsfield Scale to cover the fat - bone range.

All PET-CT studies were copied twice to simulate the

presence of two follow-up PET-CT study pairs. For all 10

generated image sets 20 random T
g
1

and T
g
2

rigid transfor-

mations were generated to transform the first and second

simulated follow-up studies respectively. Gaussian noise was

applied to the transformed images to simulate a voxel content

difference as presented in [7]. This way overall 200 simulated
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cases were simulated. The generated transformation pairs

were stored in T
g
1,i and T

g
2,i where (1 ≤ i ≤ 200).

B. Methods

Four different registration methods have been investigated.

The first two cases were previously proposed similarity

measurements, while the last two were proposed by us. All

four methods had common parameters regarding the way of

sampling, multi-resolution technique, maximum number of

iterations and the chosen optimization method. Overall three

multi-resolution levels were defined, where the sampling was

performed in equidistant spatial coordinates. The resolution

of the sampling was stored in R ⊆ N>0 set where R =
{r1, r2, r3}. The maximum number of iterations were stored

in It ⊆ N>0 set where It = {it1, it2, it3}. For values of R

and It see Tab. I.

Let I = {C1, C2, C3, P1, P2, P3} denote one of the

200 generated cases where Cj , Pj image pairs represent a

corresponding CT-PET pair and (1 ≤ j ≤ 3). Let oI ∈ R
3

and eI ∈ R
3 denote the minimal origin and maximal end

spatial positions of images in I .

Let Xi ⊆ R
3 denote a coordinate set where x ∈ Xi if

oI < x < eI . Let furthermore assume that the elements

of Xi characterize equidistant spatial coordinates where the

distance between neighboring coordinates is ri ∈ R.

Let xT = T (x) denote that x ∈ R
3 spatial coordinate

is transformed by T transformation and the result is xT .

Let us define furthermore an opt optimization method which

generates a (T1, T2) rigid transformation pair based on the

similarity measurement calculated by one of the specific

methods detailed below. The general framework of all four

registration methods is presented in Tab. II.

Below the specific registration methods are detailed that

define the way of feature extractions (if it was necessary)

and the way of calculating s ∈ R similarity value.

1) eSSD: The extended SSD method involved all three

C1, C2, C3 images of the actual I set.

Let vC = (C1(x), C2(T1(x)), C3(T3x)))) denote a value

vector which represents the sampled values of C1, C2 and

C3 images based on the given T1 and T2 transformations

(vC ∈ R
3).

Let us define an SCi,j ⊆ R
3 set which contains all vC

samples determined in the ith resolution level and in jth

iteration. Based on SLi,j the extended SSD measurement

eSSD(SCi,j) is defined by ( 2).

TABLE I

VALUES OF SAMPLING RESOLUTION AND MAXIMUM NUMBER OF

ITERATIONS IN ALL RESOLUTION LEVEL

Resolution level (i) ri (mm) iti

1 16 300

2 8 200

3 4 200

where ri ∈ R and iti ∈ It

TABLE II

ALGORITHMIC STEPS OF THE GENERAL REGISTRATION FRAMEWORK

1 I := {C1, C2, C3, P1, P2, P3}

2 perform specific feature extraction steps

3 set T1, T2 identical

4 ∀ri ∈ R:

5 calculate Xi based on I and ri

6 ∀itj ∈ It :

7 ∀x ∈ Xi :

8 xT1
= T1(x)

9 xT2
= T2(x)

10 calculate specific s similarity measurement

11 (T1, T2) = opt(s)

where opt was chosen to be the Nelder-Mead optimization
method [12]

∑

vC∈SCi,j

(vC
1
− vC

2
)2 + (vC

1
− vC

3
)2 + (vC

2
− vC

3
)2

n
(2)

where vC = (vC
1

, vC
2

, vC
3

) and n = |SCi,j |.
2) eNMI: The extended NMI method involved all three

C1, C2, C3 images of the actual I set.

Assuming that the definition of SCi,j is the same as

in the previous section, the extended NMI measurement

eNMI(SCi,j) is defined by ( 3).

∑

v∈SCi,j

3
∑

k=1

p(vk) log p(vk)

∑

v∈SCi,j

p(v1, v2, v3) log p(v1, v2, v3)
(3)

where p(vk) ∈ R denotes the probability of the vk value

occurrence in the elements of SCi,j and p(v1, v2, v3) ∈ R
3

denotes the probability of the value vector p(v1, v2, v3)
occurrence in SCi,j .

3) eSSD Laplace: Current method built on the idea of

operating with second derivative images having great differ-

ences and sign changes that were typically located at the

edges. This way the contrast between a “good” and a “bad”

fit could be increased which could led to a more accurate

similarity measurement. The extended SSD Laplace method

involved all three C1, C2, C3 images of the actual I set.

Let XCk ⊆ R
3 denote a set which contains all voxel

coordinates of image Ck where (1 ≤ k ≤ 3). The CT images

were preprocessed by a three dimensional Laplacian operator

[13] with a 3D 3 × 3 × 3 voxel sized kernel as defined by

( 4) is order to provide a second derivative image. The result

of the operator on Cj image was stored in CL
j image where

(1 ≤ j ≤ 3).

∀(x, y, z) ∈ XCk :

CL
k (x, y, z) = 27 · Ck(x, y, z)−
1

∑

a=−1

1
∑

b=−1

1
∑

c=−1

Cj(x + a, y + b, z + c)

(4)
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where ∀a, b, c : (x + a, y + b, z + c) ∈ XCk is true and

(1 ≤ k ≤ 3).

Let vL =
(

CL
1

(x), CL
2

(T1(x)), CL
3

(T2(x))
)

denote a

value vector which represents the sampled values of CL
1

,

CL
2

and CL
3

images based on the given T1 and T2 trans-

formations. Let us define an SLi,j set which contains all

vL samples determined in the ith resolution level and in

jth iteration. Based on SLi,j the extended SSD Laplace

measurement eSSDL(SLi,j) is defined by ( 5).

∑

v∈SLi,j

(v1 − v2)
2 + (v1 − v3)

2 + (v2 − v3)
2

n
(5)

where v = (v1, v2, v3) and n = |SLi,j |.
4) Hextuple: The hextule method involved all six

C1, C2, C3, P1, P2, P3 images of the actual I set. The CT

images were preprocessed by a three dimensional Laplacian

operator as defined by ( 4) to generate CL
j for the corre-

sponding Cj images where (1 ≤ j ≤ 3).

Current method measured the extended SSD over CL
j

images and the extended NMI over Pj images by ( 5) and

( 3) respectively.

Since the similarity values of an eSSDL and an eNMI

measurement were very different, they were normalized

to properly include them into one similarity measurement.

Assuming that the initial spatial alignment of the images

gives worse similarity values than the optimal one, reference

similarity values eSSD(SCLi,0) and eNMI(SPi,0) were

calculated in all i resolution level.

The final similarity value hextuple(SLi,j, SPi,j) was

calculated by ( 6).

eSSDL(SLi,j)

|eSSDL(SLi,0)|
+

eNMI(SPi,j)

|eNMI(SPi,0)|
(6)

Note that both eSSDL and eNMI values were normal-

ized by their values given in the first initial iteration. This

way both values were present in the measurement with equal

weights.

C. Validation

The above detailed methods have been performed on all

200 simulated image sets. The result (T1, T2) transformation

pair of the given method have been compared to the reference

(T g
1
, T

g
2
) pair by subtraction. The parameter difference of

the given (T1, T2) and (T g
1
, T

g
2
) was stored in δi in mm

(1 ≤ i ≤ 12). Translation and rotation mean (µtr
δ ), µrot

δ ) and

standard deviation (σtr
δ ), (σrot

δ ) of δi errors were measured

for all methods. Furthermore the sum of the ǫj spatial volume

corner distances were measured (1 ≤ j ≤ 8) and their mean

(µǫ) and standard deviation (σǫ) was calculated as well for

all methods.

III. RESULTS

According to current results the normalized hybrid mea-

surement provided by our hextuple method gave the best fit

of the images, while the second best result was achieved by

the eSSD Laplace method. The worst result was provided

Fig. 1. Orthogonal fusion views of an example I set having the initial
stage (top) and the final stage (bottom) provided by our hextuple method.

by eSSD which was significantly outperformed by the eNMI

method. For detailed results see Tab. III, Tab. IV, Tab. V

and Fig 2.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have compared our methods with the extended version

of some well known similarity measurements that are gold

standards in the field of medical image registration. Working

with the above simulated data led us to the conclusion

that the known behavior of prior methods may change if

the number of images are more than two. This means that

additional feature extraction steps are required to correctly

handle the increasing number of images. Current research

registered three and six images as well and successfully

shown that the increasing number of information requires

TABLE III

TRANSLATION ERRORS OF DIFFERENT METHODS

Resolution levels

Method r1 r2 r3

eSSD 22.12± 28.47 17.57± 27.1 14.78± 26.27

eNMI 8.14± 7.35 6.45± 6.07 5.53± 5.74

eSSDL 8.71± 6.75 5.42± 5.04 4.02± 3.91

hextuple 6.87± 5.63 4.24± 3.67 2.91± 2.74

Where the values in cells denote the µtr
δ

± σtr
δ

error in mm.
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Fig. 2. Translation, rotation and corner distance errors represented for all methods in all ri resolution level. The eSSDLaplace and hextuple
measurements gave the best fit. Conventional eSSD method worked with significantly greater error. The greatest differences appeared in the translational
parameters.

TABLE IV

ROTATION ERRORS OF DIFFERENT METHODS

Resolution levels

Method r1 r2 r3

eSSD 0.026± 0.022 0.018± 0.021 0.015± 0.018

eNMI 0.021± 0.022 0.016± 0.019 0.014± 0.018

eSSDL 0.015± 0.016 0.008± 0.010 0.005± 0.007

hextuple 0.014± 0.014 0.007± 0.010 0.005± 0.007

Where the values in cells denote the µrot
δ

±σrot
δ

error in mm.

TABLE V

CORNER DISTANCE ERRORS OF REGISTRATION METHODS

Resolution levels

Method r1 r2 r3

eSSD 468.33± 491.76 351.84± 505.31 298.69± 500.79

eNMI 163.02± 116.92 117.74± 100.59 100.76± 97.09

eSSDL 137.21± 71.74 67.98± 47.54 40.46± 35.27

hextuple 102.91± 63.29 47.51± 37.36 32.89± 28.61

Where the values in cells denote the µǫ ± σǫ error in mm.

more sophisticated, more complex similarity measurements.

Our hextuple method provided the best results, hence it is

a logical decision to involve all images into a more com-

plex similarity measurement. Although the hextuple method

provided the best results, the second best eSSDL method

gave acceptable results as well. Taking into consideration that

the hextuple method needed the most computation, specific

solutions may choose our eSSDL method if the time of the

whole process is a sensitive issue.

B. Future Works

Based on current results, we will collect more medical

data where non-linear transformations are desired to evaluate

our methods for those cases as well. We will also focus on

the speed optimization of our hextuple method. An obvious

way is the investigation of only those values located in a

specific distance from edges where the Laplacian image has

a sign change. Since the Laplacian image is available in our

hextuple method, the localization of these positions does not

require significantly more computations.

In theory all similarity measurements can be furthermore

extended. Applications that build up phantoms from a huge

amount of real medical data could take advantage from cur-

rent results if multi-modal image series need to be registered.
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