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Abstract— Multi-modal image registration is a momentous
technology in medical image processing and analysis. In order
to improve the robustness and accuracy of multi-modal rigid
image registration, a novel learning-based dissimilarity function
is proposed in this paper. This novel dissimilarity function is
based on measuring the dissimilarity between the joint intensity
distribution of the testing image pair and the expected intensity
distributions, which is learned from a registered image pair,
with Bhattacharyya distances. Then, the aim of the registra-
tion process is to minimize the dissimilarity function. Eight
hundred randomized CT - T1 registrations were performed and
evaluated by the Retrospective Image Registration Evaluation
(RIRE) project. The experimental results demonstrate that the
proposed method can achieve higher robustness and accuracy,
as compared with a closely related approach and a state-of-the-
art method.

I. INTRODUCTION
Multi-modal rigid image registration is one of essential

technologies which can provide many applications for medi-
cal image processing and analysis [1]. The applications, such
as information fusion of diagnostic images and image guided
therapy, rely on a robust and accuracy rigid registration to
provide a precise diagnosis and surgery. Therefore, robust-
ness and accuracy are two major properties to describe a rigid
image registration method. Given two images, the reference
image (Ir) and the floating image (If ), the objective of
image registration is to estimate the optimal transformation
(T ∗) such that dissimilarity of the reference image and the
transformed floating image (IT

f ) is minimized. The process
is classified as rigid image registration if the transformation
consists of translation and rotation only. The general formu-
lation of rigid image registration is

T ∗ = arg min
T

D(IT
f (X), Ir(X)), (1)

where X is the domain of the both images, D is the
dissimilarity measure and T denotes a rigid transformation.
The functionality of D is to evaluate the dissimilarity of
reference image and transformed floating image. Sum of
Absolute Difference (SAD), Sum of Squared Difference
(SSD) and Mutual Information (MI) [2], [3] are examples
of dissimilarity measure.

Recently, Gan et al. [4] proposed a learning-based dissim-
ilarity measure by using Kullback-Leibler distance (KLD).
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The KLD-based approach measuring the dissimilarity of the
testing image pair by comparing the observed joint intensity
distribution with the prior knowledge (i.e. the expected joint
intensity distribution) learned from a pre-registered image
pair. Because of the longer capture range of KLD-based ap-
proach, as compared with MI-based method, the experimen-
tal results demonstrated that the prior knowledge can improve
the registration robustness. To achieve higher robustness and
accuracy, a novel learning-based dissimilarity measure is
proposed in this paper. The novel measure is based on two
Bhattacharyya distances [5] and the prior knowledge of the
joint, and marginal, intensity distributions. Eight hundred
randomized CT - T1 registrations were performed and eval-
uated by the Retrospective Image Registration Evaluation
(RIRE) project [6]. The results were compared with a closely
related approach (the KLD-based approach) and a state-of-
the-art method (the MI-based method). It is illustrated that
the registration method with the proposed dissimilarity mea-
sure can achieve higher robustness or accuracy as compared
with the MI-based and KLD-based registration methods.

II. METHODOLOGY

A. Bhattacharyya Distances

Bhattacharyya distance [5] can be used to measure the
distance between two probability distributions. One of the
applications of Bhattacharyya distance in computer science is
image segmentation, which can be achieved by maximizing
the Bhattacharyya distance between the intensity distribution
of the pixels inside the segmented area and the intensity
distribution of the pixels outside the segmented area [7].
In this paper, we propose a dissimilarity measure for rigid
registration by utilizing two Bhattacharyya distances with
the prior knowledge of the joint and marginal intensity
distributions of a pre-aligned image pair. Let if and ir
respectively be the indices of the histogram bins of the
floating and reference images. We define that PT

o (if , ir) and
P̂ (if , ir) are the observed joint intensity distribution and
expected joint intensity distribution respectively. Then, our
first Bhattacharyya distance, named BD1, is formulated as

BD1 = − log
∫ √

PT
o (if , ir)P̂ (if , ir)dif

dir . (2)

BD1 measures the distance between the observed and ex-
pected joint intensity distributions. Since the expected joint
intensity distribution is the prior knowledge learned from a
pre-aligned image pair, it describes the underlying statistical
relationship that we expect to observe on joint intensity
distribution of the testing image pair when the images are
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Fig. 1. The translation probes of (a) MI, (b) KLD, (c) BD1 and (d) BD12

values respectively. The zero offset representing the position of ground truth.

properly aligned. Therefore, by minimizing BD1 according
to the transformation T , the floating image can be efficiently
registered to the reference image. Figs. 1(a)-(c) show the
translation probes of MI, KLD and BD1 in which pt-001
and pt-005 of the RIRE project [6] were used as the testing
images pair and the training image pair (for KLD and BD1)
respectively. The zero offset of the translation probes repre-
sents the position of the ground truth transformation (please
refer to Section III-A for the details of the ground truth
transformation). From the figure, we can notice that there
are two observable local optima in the translation probes of
MI and KLD, and such local optima do not exist in BD1.
Therefore, the registration approach based on BD1 should
be able to provide higher robustness as compared with MI-
based and KLD-based methods. This expectation is matched
with the observation described in [8] that Bhattacharyya
distance usually gives better results than the Kullback-Leibler
distance. We will experimentally prove that the observation
is also true for the rigid image registration in Section III.

However, as shown in Fig. 1, the translation probe of BD1

around the zero offset is not as sharp as that of MI and
KLD. It will affect the accuracy of the registration results.
Therefore, we introduce the second Bhattacharyya distance
which is denoted as BD2. The formulation of BD2 is

BD2 = − log
∫ √

PT
o (if , ir)(P̂ (if )P̂ (ir))dif

dir , (3)

where P̂ (if ) and P̂ (ir) are expected marginal distributions
of the floating image and the reference image respectively.
BD2 measures the distance between the observed joint in-
tensity distribution and the product of the expected marginal
distributions (P̂ (if )P̂ (ir)). When the observed joint intensity
distribution of the testing image pair is equal (or very close)
to the product of the expected marginal distributions, the
intensity values in the testing image pair can be recognized as
statistically independent. Therefore, by maximizing BD2, the
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Fig. 2. Flow chat of the proposed rigid registration framework.

transformation (T ) will be optimized such that the observed
joint intensity distribution of the testing image pair is pushed
away from the production of the expected marginal distri-
butions. This can improve the accuracy of the registration
results. Then, our proposed dissimilarity measure, which
consists of BD1 and BD2, is defined as

BD12 = BD1 −BD2. (4)

Fig. 1(d) shows the translation probe of BD12. As compared
with BD1, we can notice that the translation probe of BD12

becomes very sharp in the range around the zero offset.
Since the capture range of BD12 is much less than that of
BD1, We suggest that the registration process should only use
BD1 as the dissimilarity measure in the early state (e.g. the
coarser resolution levels of the multi-resolution registration),
and BD12 is adopted when the testing image pair is roughly
aligned (e.g. the finest resolution level of the multi-resolution
registration).

B. Registration Framework

As discussed in the last section, the proposed dissimi-
larity measure is suggested to utilize with multi-resolution
registration approach [2]. Fig. 2 is the flow chat of the
multi-resolution registration framework with the proposed
dissimilarity measure. The registration starts at the coarsest
resolution level in which the down-sampled reference and
floating images are used as the input. A rough estimation of
the optimal transformation derived in this level is passed to
the successive higher resolution level as the initial values for
optimization. The process continues until the level of original
image resolution is reached. Then, the solution of this finest
resolution level is output as the optimal transformation. For
the learning-based methods, in order to capture the prior
knowledge about the intensity relationship of the image
pair at different resolutions, the intensity distributions are
estimated at each resolution. The dissimilarity measure in
each level is minimized by the Powell’s method [9], which
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TABLE I
THE SUCCESS RATES OF MI-BASED, KLD-BASED AND BD-BASED METHODS TOGETHER WITH THE MEANS AND STANDARD DEVIATIONS OF THE

MEDIAN TRE VALUES OF THE SUCCESSFUL REGISTRATIONS FOR DIFFERENT TESTING IMAGE PAIRS. THE VALUES OF KLD-BASED AND BD-BASED

METHODS ARE AVERAGED AMONG ALL THE TRAINING IMAGE PAIRS.

MI KLD BDDataset
success% mean ± sd success% mean ± sd success% mean ± sd

pt-001 58.00% 0.6906 ± 0.1159 87.00% 1.8647 ± 0.4845 96.50% 0.6385 ±0.1345

pt-003 62.00% 0.7725 ± 0.0373 74.00% 2.8174 ± 0.4168 94.50% 1.0025 ±0.2906

pt-005 58.00% 0.6051 ± 0.2043 88.50% 2.2618 ± 0.4455 92.00% 0.9918 ±0.6258

pt-007 63.00% 1.3151 ± 0.1496 85.50% 2.2669 ± 0.5435 94.00% 1.1247 ±0.3570

Total 60.25% 0.8458 ± 0.1268 83.75% 2.3027 ± 0.4726 94.25% 0.9394±0.3520

does not require to calculate the gradient values as it exploits
Brent’s 1D line minimizations to iteratively search along a
set of directions. Hereafter, we denote that the registration
methods which utilize this framework with MI, KLD and the
proposed dissimilarity measure as MI-based method, KLD-
based method and BD-based method respectively. For the
proposed BD-based method, since BD2 will affect the capture
range of BD1, it is suggested that BD2 should only be
adopted with BD1 (i.e. BD12) in the finest resolution level
to improve the registration accuracy. In short, BD12 is used
as the dissimilarity measure in the finest resolution level and
BD1 is used in other levels.

III. EXPERIMENTAL RESULTS

A. Image Datasets, Ground Truth and Setup of Experiments

Eight hundred randomized rigid image registration ex-
periments on four sets of clinical brain X-ray computed-
tomography (CT) and T1-weighted MRI images (T1) were
performed to evaluate the proposed dissimilarity measure.
The four testing image pairs are the odd-numbered (pt-001,
pt-003, pt-005 and pt-007) CT and T1 images from the
Retrospective Image Registration Evaluation (RIRE) Project
[6]. Meanwhile, the even-numbered (pt-002 and pt-004) CT
- T1 image pairs of RIRE project were used as the training
images. Note that all T1 images used in the experiments have
been rectified by the RIRE project. Therefore, images of pt-
006 were excluded in the experiments as RIRE project does
not provide the rectified T1 image of pt-006. CT images were
the floating images and T1 images were the reference images
for all experiments. The dimension of CT image volumes
are 512 × 512 × z where z equal to 28, 29, 34, 27, 33
and 28 for pt-001, pt-002, pt-003, pt-004, pt-005 and pt-007
respectively, and the voxel size of all CT image volumes
is 0.65 × 0.65 × 4mm3. For T1 image volumes, the image
dimension of pt-001, pt-002, pt-003, pt-004, pt-005 and pt-
007 are 256×256×z where z equal to 26, 26, 20, 20, 26 and
26 respectively, and the voxel size is 1.25 × 1.25 × 4mm3

for all T1 image volumes.
The RIRE project is exploited to evaluate the registration

results in which the accuracies are reported as the target
registration errors (TREs) in five to ten (depends on the
testing image pair) volumes of interest (VOI) [6]. Since we
do not know the gold standard [6] of the RIRE project,
a set of transformations (one for each image pair) were
defined as the ground truth transformations for building the

expected intensity distributions and generating the initial
alignments (will be discussed later in this section). In this
paper, the ground truth transformations were the optimal
transformations which were returned by applying the four-
resolutions MI-based method to the six RIRE image pairs.
All the ground truth transformations were evaluated by the
RIRE project and had median TRE value less than 1mm.
The median TRE values of the ground truth transforma-
tions for pt-001, pt-002, pt-003, pt-004, pt-005 and pt-
007 were 0.9692mm, 0.5850mm, 0.7577mm, 0.7069mm,
0.9813mm and 0.3337mm respectively.

In our experiments, we compared the BD-based method
with the KLD-bases method (the closely related approach)
and the MI-based method (the state-of-the-act method) with
four resolution levels. The compared methods were applied
to register the testing image pairs (pt-001, pt-003, pt-005 and
pt-007) with one hundred randomize initial alignments for
each image pair. For the KLD-based and BD-based methods,
two sets of expected intensity distributions learned from
training image pairs (pt-002 and pt-004) were utilized for
the registration of each testing image pair. Thus, in total,
eight hundred trials (two hundred trials on each testing image
pair) were performed by the proposed BD-based method for
this evaluation. The randomize initial alignments of each
testing image pair were generated by applying one hundred
random rigid transformations on the corresponding ground
truth transformation. The X, Y and Z translational parameters
of the random rigid transformations were respectively drawn
between [-150, 150]mm, [-150, 150]mm and [-70, 70]mm,
while all the rotational parameters were drawn between [-
0.52, 0.52] radians, i.e. [-30, 30] degrees. These ranges were
chosen based on a criterion of brain structures in CT and T1
images have at least 10% overlapping region.

All programs used in this paper were implemented based
on an open source library, The Insight Segmentation and
Registration Toolkit (ITK) [10]. The experiments were car-
ried out on a PC with a CoreTM 2 Duo 2.33GHz CPU and
2GB RAM.

B. Registration Results

For each registration result, the RIRE project returned a
TRE for each VOI. Depending on the testing image pair, the
number of VOI varied from five to ten. In the experiments,
we defined that a registration was successful if the median
value of the corresponding TREs was smaller than 4mm
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TABLE II
THE SUCCESS RATES OF KLD-BASED AND BD-BASED METHODS TOGETHER WITH THE MEANS AND STANDARD DEVIATIONS OF THE MEDIAN TRE

VALUES OF THE SUCCESSFUL REGISTRATIONS FOR DIFFERENT TESTING IMAGE PAIRS BY TAKING DIFFERENT TRAINING IMAGE PAIRS .

Training image pair

Dataset All pt-002 pt-004
BD KLD BD KLD BD KLD

success% mean±sd success% mean±sd success% mean±sd success% mean±sd success% mean±sd success% mean±sd

pt-001 96.5% 0.64±0.13 87% 1.86±0.48 97% 0.60±0.13 86% 1.65±0.44 96% 0.68±0.14 88% 2.08±0.53

pt-003 94.5% 1.00±0.29 74% 2.82±0.42 94% 0.91±0.18 85% 2.50±0.26 95% 1.10±0.40 63% 3.13±0.57

pt-005 92% 1.00±0.63 88.5% 2.26±0.45 96% 0.67±0.36 85% 1.87±0.30 88% 1.31±0.89 92% 2.65±0.59

pt-007 94% 1.12±0.35 85.5% 2.27±0.54 98% 0.94±0.31 83% 2.03±0.63 90% 1.31±0.41 88% 2.50±0.46

Total 94.25% 0.94±0.35 83.75% 2.30±0.47

(4mm was chosen as it was the largest voxel dimension of
the images). Table I lists the success rates, together with the
means and standard deviations of the median TRE values for
the successful registrations, of the MI-based, KLD-based and
BD-based methods. Note that the results of KLD-based and
BD-based methods shown in Table I are averaged among the
two training image pairs. For the individual training image
pair, the details of the experimental results can be found
in the Table II. The last row of the both tables (i.e. the row
named as “Total”) summarizes the results from all the testing
image pairs for the corresponding method.

Since the experiments of each testing image pair were
performed under different initial alignments, the success rates
can illustrate the robustness of compared methods. From
Table I, we can notice that BD-based method gives a higher
success rates as compared with MI-based and KLD-based
methods, in which the averaged success rates of MI-based,
KLD-based and BD-based methods among all the experi-
ments are 60.25%, 83.75% and 94.25% respectively. Note
that the dissimilarity measure is the only different between
the MI-based, KLD-based and BD-based methods. Thus, the
higher success rate of the BD-based method demonstrates
that the proposed BD-based dissimilarity measure is more
robust than MI and KLD. It is also proved by Table II
that the BD-based dissimilarity measure can achieve higher
robustness than the KLD under different training image
pairs. For the registration accuracy, as listed in the Table
I, the averaged means of median TRE values of MI-based,
KLD-based and BD-based methods are 0.8458, 2.3027 and
0.9394 respectively. This shows that the accuracy of BD-
based method is higher than that of KLD-based method and
is comparable to the MI-based method. In short, the BD-
based method has higher robustness and similar accuracy as
compared to the MI-based method, while it outperforms the
KLD-based method in terms of both robustness and accuracy
(noted that KLD-based method is more robust than the MI-
based method as demonstrated in the tables). Meanwhile,
these experimental results are matched with the observation
described in [8] that Bhattacharyya distance usually gives
better results than the Kullback-Leibler distance.

IV. CONCLUSIONS

This paper has proposed a novel dissimilarity measure
which is based on two Bhattacharyya distances and the

prior knowledge learned from the intensity distributions of
a pre-aligned image pair. The first Bhattacharyya distance
measures the distance between the observed joint intensity
distribution and the expected joint intensity distribution. By
minimizing this distance, the testing image can be registered
efficiently. The second Bhattacharyya distance measures the
distance between the observed joint intensity distribution and
the product of the expected marginal intensity distributions.
Since the testing image pair becomes statistically indepen-
dent if the observed joint intensity distribution is equal to the
product of the expected marginal intensity distributions, max-
imizing this second Bhattacharyya distance can improve the
accuracy of the registration results. Eight hundred random-
ized rigid image registrations were performed by using the
registration method with the proposed dissimilarity measure.
The results are compared with a closely related approach and
a state-of-the-art method. It is demonstrated that the proposed
dissimilarity measure can provide higher robustness among
the compared methods, in which the accuracy outperforms
the closely related approach and comparable with the state-
of-the-art method.
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