
  

 

Abstract. In this paper we propose a new method for shape 

guided segmentation of cardiac boundaries based on manifold 

learning of the shapes represented by the phase field 

approximation of the Mumford-Shah functional. A novel 

distance is defined to measure the similarity of shapes without 

requiring deformable registration. Cardiac motion is 

compensated and phases are mapped into one reference phase, 

that is the end of diastole, to avoid time warping and 

synchronization at all cardiac phases. Non-linear embedding of 

these 3D shapes extracts the manifold of the inter-subject 

variation of the heart shape to be used for guiding the 

segmentation for a new subject. For validation the method is 

applied to a comprehensive dataset of 3D+t cardiac Cine MRI 

from normal subjects and patients.  

I. INTRODUCTION 

agnetic resonance imaging of the heart provides 

valuable information of its anatomy and functionality 

with high soft tissue contrast [1]. However, manual 

studies of the cardiac MRI sequences are usually tedious and 

time consuming and do not provide quantitative information 

that makes demands for automated and semi-automated 

approaches.  

A wide variety of approaches for segmentation of cardiac 

boundaries are proposed in the literature. In [2], 4-D 

watershed was used. In [3], intensity- and texture-based 

fuzzy affinities are employed. Joint segmentation and 

motion estimation based on Mumford-Shah’s functional and 

optical flow was applied to cardiac Cine MRI in [4]. 

Iterative thresholding and active contour with adaptation was 

proposed by Lee et al. [5]. A dual level set approach, 

coupled with data adherence term and myocardium 

incompressibility constraint was recently proposed by Zhu et 

al. [6].  

Prior information of heart shape, appearance and 

deformation was utilized for segmentation of the heat 

chambers. A shape constrained deformable model with 

piecewise affine transform optimization was used in [7]. 

Andreopoulos et al. [8] proposed using 3-D active 

appearance model followed by 2-D+t active shape model. 

Lynch et al. [9] applied non-rigid parametric temporal model 

of ventricular wall’s deformation. Zhang et al. [10] used a 4-

D model for preliminary segmentation of left and right 

ventricles, followed by intra-frame process with a 3-D 

model. 
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In this paper, we use manifold learning to find the lower 

dimensional embedding of the heart shapes that represents 

the inter-subject variation. We use this manifold to import 

shape prior information to the segmentation problem and 

make a guided segmentation based on the training data 

samples. Manifold learning is a non-linear dimensionality 

reduction technique based on the assumption that the data in 

the higher dimensional space has a small number of degrees 

of freedom and data points are lying on a low dimensional 

manifold [11]. Manifold learning is used for visualization 

and classification of morphometric difference [12]. In [13] it 

is used as a tool to model the breathing and cardiac 

functionality. Hamm et al. [14] proposed a framework for 

large deformation registration using the manifold structure 

of the data. Georg et al. [15] used learned manifold 

coordinates for 4D CT construction. Wachinger et al. [16] 

applied manifold learning to 4D ultrasound reconstruction. 

Etyngier et al. [17] learn shape prior manifold to guide the 

image segmentation.  

In the first part of this paper we provide a framework for 

modeling the heart shape based on manifold learning with a 

new distance measure defined from the phase field 

approximation of the Mumford-Shah’s functional. We 

prepare the 3D training data set by determining a region of 

interest and then compensating for the cardiac motion into a 

reference phase, i.e. end of diastole. Thus, for each subject in 

the training set, a set of shape samples at end diastole are 

created to obtain a dense collection of data points and a 

statistically more robust model. In this way, there is no need 

for synchronization between sequences. Having created a 

densely sampled shape space, we find a lower dimensional 

embedding of this dataset to be used for guiding the 

segmentation in the second part. In the second part of this 

paper we propose a shape guided approach for segmentation 

of cardiac boundaries based on the learned manifold. We 

validated our approach on a comprehensive database and 

provide quantitative results. 

II. METHODOLOGY 

Our framework of shape guided segmentation is founded on 

the phase field approximation [18] of the Mumford-shah 

functional [19] for representing the shape. The resulting high 

dimensional space of shape is then embedded to the lower 

dimensional manifold of admissible shapes which will guide 

segmentation of new sequences. 

A. Phase field representation of shape 

Mumford and Shah, in their pioneering work [19], propose a 

functional of the edge set ( ) and smooth approximation ( ) 

for segmentation of the input image   so that excluding the 
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edge set from the image domain ( ) yields a smooth 

approximation of the input image. Later, Ambrosio and 

Tortorelli [18] proposed approximation to the Mumford-

Shah functional, by defining phase field variable       to 

be negligible at edges and almost 1 elsewhere. Then the 

solution to the segmentation problem can be realized by 

iteratively solving the set of corresponding Euler-Lagrange 

equations: 
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where     ( )    is a small positive real value. The 

scale parameter   controls the width of the extracted edge set 

represented, so a scaled representation of the shape is 

attained. Furthermore, the phase field representation of the 

shape is landmark free and continuous in    that allows us 

to define a new distance measure to be used for manifold 

learning. Hence, we define the shape of cardiac boundaries 

in the high dimensional space by the phase field 

representation and learn the corresponding manifold of these 

shape representations to guide segmentation of cardiac 

boundaries. 

B. Manifold Learning 

The general idea behind the manifold learning techniques is 

to find a low dimensional representation of data samples 

lying on a manifold in high dimensional space    while 

preserving the local neighborhood. The problem is defined 

as finding the points       on the low dimensional 

manifold  , given a set of high dimensional points    
  ,    . 

Sevaral manifold learning techniques have been proposed in 

the literature. Among them are Laplacian Eigenmaps [20], 

Isomap [21], and Diffusion Maps [22]. We employ 

Laplacian eigenmaps which is a spectral technique for non-

linear embedding since it is well founded on mathematical 

concepts (Laplace Beltrami operator) and computationally 

efficient. Laplacian eigenmaps build upon the construction 

of a graph, which represents the neighborhood information 

of the data set. Subsequently, the graph Laplacian is applied 

to calculate a low-dimensional representation of the data that 

preserves the local neighborhood information in an optimal 

way. Each node on the graph represents one data point 

(phase field representation of cardiac boundaries in our case) 

and nodes are assigned weights depending on the k-nearest 

neighboring points. The embedding is then formulated as 

minimization of the low dimensional coordinates   : 
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  ,     and  (     ) is the distance 

between each pair of data samples. Optimal solution can be 

achieved by solving the corresponding minimum eigenvalue 

decomposition problem. 

C. Data embedding of heart shape 

Various scenarios can be proposed for embedding of the 

3D+t data of the shape, appearance and motion of heart. 

With respect to the shape of cardiac boundaries, there are 

two types of deformation: intra-subject deformation of heart 

along cardiac cycle and inter-subject deformation between 

individuals that is of more significance to be modeled.  

The schematic diagram of the proposed framework for data 

embedding of the shape of cardiac boundaries is shown in 

Fig. 1. First we compensate for the heart motion for each 

subject by estimating the warping from the end of diastole to 

different cardiac phases to bring them into the reference time 

point of the end of diastole. Assume that      is the 

estimated motion from end of diastole to the  th time point 

(       ) of the 3D+t volume sequence. By applying the 

inverse of the estimated motion     
   a set of 3D volumes 

{ [ ]  [ ]      
       [ ]      

  } at the reference phase is 

attained. By doing this, we avoid the need for time warping 

and synchronizing of the volume sequences at all phases. 

After intensity normalization of the resulting set of volumes, 

the region of interest is determined by manually locating 

some points and applying the corresponding convex hull 

mask. Then we solve the set of Eq. (1) and Eq. (2) iteratively 

to attain the phase field representation of the shape of 

cardiac boundaries to be embedded.  

Performance of manifold learning strongly depends on the 

distance measure for neighborhood selection and weighting. 

The conventional sum of squared difference (SSD) used in 

many applications does not appropriately imply distance of 

two images. A more appropriate but computationally 

complex measure can be defined by considering the warping 

between two images. We propose a new similarity measure 

based on the phase field representation of shape which has a 

better performance than SSD and does not need deformable 

registration of images. The distance is defined based on the 

Mumford-Shah’s definition of the edge set and its phase 

field approximation. 
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Fig. 2 illustrates how the distance between two images    

and    is measured based on the phase field representation of 

their edge sets    and    and their smooth version    and    in 

Eq. (4). Solid black lines represent three edge maps 

(|   | |   | |   |) that can be assumed to be one row of 

three images. The blue lines represent the phase field 

representation of the first edge map (  ) corresponding to 

|   |. It can be seen how the overlay between |   | and    is 

different from the overlay between |   | and    when the 

scale parameter   is large enough. Smaller values of the 

scale parameter provide more definite representation of the 

edge set and so the distance measure in Eq. (4). However, a 

too small scale value may eliminate the sensitivity to the 

distance of edges. 
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D. Shape Guided Segmentation 

The learned manifold of heart shapes provides shape prior 

information that we use to guide segmentation of cardiac 

boundaries. Generalizing the Mumford-Shah functional to 

3D+t, cardiac boundaries can be segmented by minimizing 
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Applying the estimated cardiac motion  [ ]   [ ]       we 

have: 
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The estimated motion fields      are assumed to be 

regularized so that     ( [ ]      ) is limited if 

    ( [ ]) is limited and so is excluded from the 

functional. Let   represent the edge set at the end diastole 

(  ), then phase field approximation of the functional in 

Eq. (6) is 
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By using techniques of calculus of variation, the minimizer 

of the functional in Eq. (7) can be achieved by iteratively 

solving the set of Euler-Lagrange equations: 
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In order to limit the space of feasible shapes to the learned 

manifold, we project the resulting   after each iteration to 

the lower dimensional manifold by the technique of out-of-

sample extension proposed in [23]. Embedding for the new 

sample is computed as follows; 

 

 
Fig. 1 Schematic diagram of the proposed shape embedding after 

compensation of cardiac motion. 

---------------- 

 
Fig 2. Demonstration of the defined distance measure in Eq. (4) based on 

the phase field representation of shape. 

------- 
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where    is the embedding for   . It is basically adding a 

new row or column to the weight matrix of embedding and 

projecting it onto the space spanned by   eigenvectors 

computed previously. An illustration of the extension is 

shown in Fig. 3. 

 

 
Fig. 3. Out-of-sample extension for embedding a new sample between 

samples 6 and 7. 
 

We incorporate out-of-sample extension in the context of 

guided segmentation problem as follows: 

 The already existing embedding is extended to the new 

data sample. 

 The resulting embedding is projected onto the learned 

manifold of the training set. 
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 A new shape is constructed from the shapes 

corresponding to the nearest neighbors found after 

projection. 

 The construction is done by interpolating a new shape 

   using the deformation between the nearest shapes. 

 The new shape is used to initialize the next iteration. 

 

Finally, we propose our shape guided optimal solution based 

on the functional in Eq. (7) and the learned manifold of the 

heart shape: 

Step 0 Compute the motion fields      and initialize 

 [ ]   [ ] for all   and     

Step 1 Solve Eq. (8) for fixed   

Step 2 solve Eq. (9) for fixed { [ ]} 

Step 3 Find the corresponding shape    on the learned 

manifold 

Step 4 if   is not a stationary point then let      and 

go to step 1 

III. EXPERIMENTAL RESULTS AND DISCUSSION  

The proposed method for shape guided segmentation is 

applied to a data set of 83 volume sequences. Images are 

taken from young (25), adult (43) and old (15) subjects with 

a wide range of heart shapes. Each sequence includes 20 

frames of volumes by the size of           after 

cropping into the region of interest. After motion 

compensation, a number of 1340 samples of the heart shape 

at end diastole are obtained from 67 subjects to be 

embedded. Phase field representation of the shape is then 

extracted from Eq. (1) and Eq. (2) for each sample to be 

embedded to the lower dimensional space, i.e. three 

dimensional shape prior manifold. Performance of the 

proposed distance measure in Eq. (4) can be seen in Fig. 4. 

The images in the right and the middle columns are the 

closest matches to the images in the left column with respect 

to the SSD and the defined distance, respectively. It can be 

seen in that the nearest images based on the defined distance 

measure are visually closer.  

 

 
Fig. 4. In each row the closest sample to the heart in the left column 

with respect to the defined distance (middle) and the SSD (right) is 

shown. 
 

Achievement of the proposed guided segmentation in 

segmenting weak and ambiguous boundaries is shown in 

Fig. 5. The proposed method is also quantitatively validated 

by computing the Dice metric ( ) [9] between the 

segmented object with a cardiologist’s delineation. Table I 

reports the results of segmentation of the left ventricle’s 

endocardium and epicardium and the right ventricle. Besides 

this technical metric, clinical measurements including end-

diastolic volume (EDV), ejection fraction (EF) and left 

ventricle myocardium mass (MM) are computed and 

reported in table II. The Bland-Altman plot and the linear 

regression of the estimated values of EDV are shown in Fig. 

6. Our experimental results support that the proposed shape 

guided segmentation algorithm is highly accurate and robust 

in segmenting the cardiac boundaries. The Bland-Altman 

analysis indicates that there is a good agreement between the 

results of the proposed shape guided segmentation and the 

manual segmentation. In addition, it does not need manual 

intervention except for determining the convex hull of the 

region of interest. However, the proposed approach is more 

successful in segmenting the left ventricle as the shape of the 

right ventricle has more variation than the left ventricle. 

 

   
Fig. 5. Result of the proposed shape guided segmentation at three different 

slices 

---- 

 
(a) 

 
(b) 

Fig.6. Resulted EDV in comparison with manual segmentation. (a) 

linear regression, (b) Bland-Altman plot. 
 

The proposed framework for the shape modeling is non-

linear learning of the shape prior manifold that in 

comparison with the linear PCA of active shape model 

represents the intra-subject variation more properly, 

especially when the variety increases in the studied 

population. Besides, much less effort is required for 

preparation of the training dataset as phase field 
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representation of the shape is used instead of landmark based 

shape representation and hence there is no need for manual 

segmentation of the training samples. The employed strategy 

of distributing the shape prior information from the end 

diastolic phase to other phases effectively avoided the need 

for temporal synchronization of the volume sequences at all 

cardiac phases. The proposed framework is in general 

applicable to the segmentation of other organs in other 

modalities as long as the phase field representation of the 

shape is not affected by the noise amount or very complex 

structure of the boundary. 

 

Table I 
Accuracy of the proposed method in Dice metric (  ) 

LV Endocardium LV Epicardium RV 

93.83 89.25 91.40 

---------- 

Table II 
Resulted clinical measurements from the proposed method in 

comparison with manual segmentation. 

  EF ( ) MM (g) EDV (mL) 

Manual  
   
     

                     
     
      

Proposed 

   
     

                     
     
      

     0.86 0.81 0.88 

 

IV. CONCLUSION 

We proposed a framework for shape guided segmentation of 

cardiac boundaries based on the phase field representation of 

shapes and manifold learning without requiring time 

warping of the sequences and segmentation of training 

samples. We defined a new distance measure for manifold 

learning based on the phase field representation. Time 

warping of the sequences is avoided by taking the strategy of 

compensating the cardiac motion during training step and 

modeling the heart shape at the end of diastole and 

distributing the model to other cardiac phases during 

segmentation. The proposed method was applied to a 

comprehensive dataset including wide variety of heart 

shapes and its performance was compared to manual 

segmentation through technical and clinical measurements. 

Validation results illustrate benefits of our shape guided 

approach for segmentation of left and right ventricles.  
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