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Abstract— Testing for nonlinearity is one of the most
important preprocessing steps in nonlinear time series analysis.
Typically, this is done by means of the linear surrogate data
methods. But it is a known fact that the validity of the results
heavily depends on the stationarity of the time series. Since
most physiological signals are non-stationary, it is easy to falsely
detect nonlinearity using the linear surrogate data methods.
In this document, we propose a methodology to extend the
procedure for generating constrained surrogate time series
in order to assess nonlinearity in non-stationary data. The
method is based on the band-phase-randomized surrogates,
which consists (contrary to the linear surrogate data methods)
in randomizing only a portion of the Fourier phases in the high
frequency domain. Analysis of simulated time series showed
that in comparison to the linear surrogate data method, our
method is able to discriminate between linear stationarity,
linear non-stationary and nonlinear time series. Applying our
methodology to heart rate variability (HRV) records of five
healthy patients, we encountered that nonlinear correlations
are present in this non-stationary physiological signals.

I. INTRODUCTION

There might be no doubt that most physiological systems

include nonlinear components as the result of nonlinear

relations between different variables, but the fact that a

system contains nonlinear components does not imply that

this nonlinearity is also reflected in a signal that is measured

from it [1]. For this reason, there is a strong need for

statistical tools for assessing the presence (or the absence)

of nonlinear correlations in physiological data. The surrogate

data method [2], has become the standard tool for such

tasks; it basically consist in generating a set of surrogate

signals from data that share linear properties with data but

are otherwise just a linear stochastic process; this can be

achieved by computing the Fourier Transform (FT) of the

data, then replacing the Fourier phases by the Fourier phases

of a stochastic random process and finally finding the inverse

FT; then using some discriminant statistic on the data and the

surrogates, a statistical test is performed, and if the statistic

value of the data deviates from that of the surrogates, the null

hypothesis that data are a realization of a stochastic linear

process may be rejected; otherwise, it may not.

As the process that generated the surrogate data is stationary

[3], when this methodology is applied to a non-stationary

signal, the null hypothesis will probably be rejected, but there
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is no way to know if this rejection is because the signal is

nonlinear, non-stationary or both. And as most physiological

signals are non-stationary, it is probable that most results

obtained through the implementation of this methodology to

these kind of signals are if not spurious at least doubtful.

Many attempts have been made to correctly apply this

method to non-stationary signals; to us, there have been

three breakthroughs toward this goal: i) T. Schreiber [4]

proposed that to avoid the problem when dealing with

non-stationary data, the non-stationarity should be included

in the null hypothesis; in this way, rejection of the null

hypothesis should be solely due to the presence of nonlinear

correlations; ii) T. Nakamura et al. [5] proposed that to

apply the surrogate data method to non-stationary signals,

randomization of the Fourier phases should be made in a

portion of the frequency domain; and iii) preserving the low

frequency Fourier phases, T. Nakamura et al. were able to

assess the presence of nonlinear correlations in data with a

long term trend, including this kind of non-stationarity within

the null hypothesis [5].

To this day, there is not a clear methodology that

researchers can follow to apply the surrogate data method

to physiological signals, specially when the signals have

nonstationarities such as sudden dynamical changes and/or

spikes( e.g. HRV records). This because nor the classical

method [2], [6] nor the modification proposed by T.

Nakamura et al. [5] are suited for these kind of signals.

In this study, we propose a method for generating constrained

surrogate data in order to test the presence of non-linear

dynamics in potentially non-stationary time series, according

to the null hypothesis of non-stationary linear stochastic

process (possibly transformed by a static nonlinear function).

The method is based on the band-phase-randomized

surrogate data method [5]. To provide a comparison

with other approaches, we consider traditional constrained

realizations through the phase-randomization procedure [6]

and the band-phase-randomized method as proposed by T.

Nakamura et al. [5]. The comparison is first performed on

simulations reproducing both linear and nonlinear processes,

in which stationary and non-stationary features are imposed.

The performance of our procedure is then assessed on real

HRV data of healthy patients.

II. MATERIALS AND METHODS

A. Materials

1) Simulated time series: To test the proposed

methodology we applied it to simulated time series

with different features: linear stationary (LS), linear

non-stationary (LNS), nonlinear stationary (NLS) and
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nonlinear non-stationary (NLNS) time series.

The linear time series were generated by:

x(n) = a1(n)x(n − 1) + a2x(n − 2) + η.

Where

a1(n) = 2cos(2π/T (n))e(−1/τ), a2 = e(−2/τ),

T (n) = Te + MT sin(2πn/Tmod), η ∼ N (0, 1).

For the LS signal Te = 10, Tmod = 250, τ = 50 and MT =
0, for the LNS signal MT = 6.

The nonlinear time series were generated by:

x(n) = a1(n)x(n−1)(1−x2(n−1))e(−x2(n−1))+a2x(n−2).

For the NLS signal a1(n) = 3.4 and a2 = 0.8. For the NLNS

signal

a1(n) =

{

3.0 if 0 < n ≤ N/2,

3.4 if N/2 < n ≤ N .

2) Physiological signals: The HRV signals were extracted

from the MIT-BIH Database in Physionet [7]. Sample rate

of the ECG was 128 Hz in 24-hr Holter recordings. There

are 5 records of healthy patients, 2 men and 3 women, aged

20 to 45.

B. Band-phase-randomized surrogates

The band-phase-randomized surrogate data method, has

a similar algorithm as the Amplitude Adjusted Fourier

Transform (AAFT) surrogate data method [2] except that

phase randomization is done in a specific frequency band

while leaving the phase structure in other bands unchanged.

Any non-Gaussian distribution in the original time series is

accounted for by the iterative re-scaling procedure proposed

in [6].

C. Testing for nonlinearity

Testing for nonlinearity in non-stationary time series is

not an easy task, that is way the approaches that has been

proposed are limited to some classes of non-stationarities [5]

or involve a computational intensive optimization procedure

[4]. Our approach is based on the idea that by generating

surrogate series that preserves the power spectrum and

some of the Fourier phases, the time variant behavior of

the original series will also be present in the surrogates.

[5], [8]. It may happen that by preserving some Fourier

phases, the surrogates data are as nonlinear as the original

time series but, when data are nonlinear, even if the

power spectrum is preserved completely, the inverse Fourier

transform surrogates generated using randomized phases will

exhibit a different dynamical behavior.

1) Proposed approach: First, select two values fcmax
≈

N/2 (N is the data length) and fcmin
= 0. Within this range,

select a set of values for a parameter fc (e.g. 10 values),

then generate a set of band-phase-randomized surrogates for

each value of fc randomizing the phases only above fc

(i.e. generate surrogate series by randomizing only a portion

on the Fourier phases in the higher frequency domain);

note that the horizontal axis of the Fourier phases usually
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Fig. 1. Proposed approach for detecting nonlinearity in non-stationary time
series.

correspond to the frequency measured in Hz; but in this

case we are using an arbitrary unit that corresponds with the

number of data points. Then, check if the resultant surrogate

series preserve the linear correlations present in the original

data (this can be assessed by means of the autocorrelation

function measured at small lags, specifically at lag equal

to unity). After that, using some pre-selected discriminant

statistic perform a nonlinear test. It is important to note that

the fact that there is statical difference between data and

surrogates at a certain value of fc does not imply that the

data is nonlinear (this may also happen because the data is

non-stationary), this is why one should make the test for

all the selected frequencies within the range before making

any conclusions. A flow chart of our proposed approach is

displayed in the Fig. 1.

2) Selection of the discriminant statistic: As discriminant

statistics the average mutual information measured at a

lag equal to the unity (I(1)) was selected. The I(τ) is

a nonlinear version of the autocorrelation (AC(τ)). It can

answer the following question: On average, how much does

one learn about the future from the past? The main reasons
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Fig. 2. The dotted vertical lines in all panels correspond to the value of the
statistic (in the upper panels the AC(1) while in the lower panels the I(1))
computed for the original time series. The lower and higher value of each
vertical line correspond to the 5th and 95th percentile of the value of each
statistic elicited from the set of surrogates. Panels a and b are the results
for the LS signal; c and d for the LNS signal; e and f for the NLS signal
and finally g and h for the NLNS signal. See the text for interpretation.

for the selection of this discriminant statistic is because

it does not depend on the reconstruction of an atractor,

something that is problematic in non-stationary data, and

because in a previous study we encountered that I(1) is a

good statistic for hypothesis testing [8].

3) Hypothesis testing: To reject (or not) a null hypothesis,

Ns = 99 surrogates were generated using an improved

amplitude adjusted version of the band-phase-randomized

surrogate data method (as the I(τ) depends on the amplitude

distribution of the data, then, data and surrogates must

have equal amplitude distribution to avoid false rejections).

Then, Ii(1)|Ns
i=1 is computed for the ensemble of surrogates

and for the original time series (I0(1)). Then, the series

{I0(1), Ii(1)|Ns
i=1} is sorted and the position index (rank)

r of I0(1) is determined. A null hypothesis is rejected only

if r > 95 (in this case, a one side test is applied).

III. RESULTS

Before applying the proposed methodology, every signal

was standardized and the largest subsegment that minimize

the end-point mismatch was found [1].

A. Simulated time series

As depicted in Fig. 2 a. and b., when the signal is LS, the

selected statistic is not capable of detecting any difference

between data and surrogates generated with different values

of fc; this implies that using the proposed methodology,

one would not falsely reject a null hypothesis when data is

actually LS. Fig. 2 e., f., g., and h., show that when the signal

is nonlinear (stationary or not), I(1) is able to discriminate

between data and surrogates for every value of fc.

The most interesting case, at least for the purpose of this

study, is when data is linear and non-stationary (Fig. 2 c.

and d.) in this case, it can be observed that the selected

statistic detecs a difference between data and surrogates

when fc = 0 (i.e., iAAFT surrogates), but one cannot know

if the hypothesis is rejected because the data are nonlinear,

non-stationary or both. As value of fc is increased, the

statistical difference between data and surrogates disappear;

this implies that for some values of fc, linearity and

non-stationarity present in data are also present in the

surrogates series and as we found no statistical difference

in these cases, null hypothesis cannot be rejected.

B. Comparison between different constrained surrogate data

methods

The null hypothesis tested by the iAAFT surrogate data

method is that data are a realization of a linear stochastic

process probably measured by a static invertible nonlinear

function, and as the linear non-stationary time series does

not conform to this null hypothesis there is not surprise that

it is rejected (as observed in Fig. 2 d. when fc = 0). The

same is true for the surrogate data method introduced by T.

Nakamura et al. [5]; in this case the null hypothesis tested

is that data are a realization of a linear stochastic process

with a slow varying trend probably measured by a static

invertible nonlinear function. Which is not true for any of

the realizations analyzed in this study. In fact, if one applies

the methodology proposed in [5] to a time series with no

slow varying trend, one will end up with surrogate series

that have the exact same Forier phases and power spectrum

as the original series.

The null hypothesis tested by the proposed methodology is

that data are a realization of a linear non-stationary stochastic

process probably measured by a static invertible nonlinear

function; both previous null hypothesis are included in this

one (if the time series is linear stationary then the null

hypothesis cannot be rejected, as in Fig 2 b., while if the time

series have a slow varying trend the proposed methodology

will turn out to be the same as the proposed in [5]).

C. Application to HRV records

It is well know that nonlinear dynamics are involved in

the genesis of HRV, which is a result of the interactions

between hemodynamic, electrophysiological, and humoral

variables [9]. But whether the recorded HRV series reflects

this nonlinearity or not, must be proven for each case. In

this section, we apply the proposed methodology to assess

nonlinearity in HRV records which are known to have spikes

and nonstationarities due to variation of patient activity an

other physiological reasons (see Fig. 3 a.).

Fig. 3 a., shows 1 hour record of the HRV of a healthy 32

year old male, the starting time is about midnight and the

patient is at rest. Fig 3 b., depicted one iAAFT surrogate,
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Fig. 3. a) Segment of a HRV time series of an 32 year old healthy male, b)
surrogate generated using the iAAFT algorithm, c) band-phase-randomized
surrogates using fc = 360.
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TABLE I

RESULTS OF THE RANK TEST AS A FUNCTION OF fc FOR THE 1-H HRV RECORDS OF FIVE HEALTHY PATIENTS.AC AND I WERE CALCULATED FOR

τ = 1.

fc

0 240 480 720 960 1200 1440 1680 1920 2160

AC I AC I AC I AC I AC I AC I AC I AC I AC I AC I

n1rr 77 100 90 100 87 100 49 100 32 100 37 100 25 100 13 100 19 100 32 100
n2rr 16 100 51 100 100 100 98 100 83 100 74 100 74 100 36 100 37 100 27 100
n3rr 24 100 46 100 56 100 45 100 63 100 34 100 61 100 69 100 60 100 55 100
n4rr 70 98 30 100 35 100 19 100 17 100 56 100 29 100 41 100 22 100 13 100
n5rr 20 98 52 100 85 100 81 100 85 100 70 100 46 100 49 99 40 100 36 100

while Fig 3 c. depicted one band-phase-randomized surrogate

generated with fc = 360.

The original time series has much of its energy concentrated

in the high frequency components. In the iAAFT surrogates,

the high frequency energy of the original time series is

blurred in all the frequency spectrum so, one obtains

surrogates that are not similar to the HRV signal and

this causes a trivial rejection of the null hypothesis.

Band-phase-randomized surrogates overcome this problem

by preserving the phases in a portion of the frequency

domain, in this way, high frequency and low frequency

components of the original time series are preserved in

surrogates, as can be observed in the upper and lower panels

of Fig. 3.

For generating the results presented in the Table I, a 1-h

HRV record from the 24-h Holter records database (the

same notation as [7] was used so, a detailed description of

each record can be found online) was randomly taken; the

record was preprocessed and 99 surrogates were generated

for each value of fc, then a rank test was performed, both

for AC(1) and I(1); table I shows the position index (r) of

both statistics measured from the original time series.

As can be observed, only for 1 record (n2rr) and for two

values of fc (480 and 720), linear correlations of data are

not preserved in surrogates. When fc = 0 (i.e., the Fourier

phases are randomized in all the frequency domain), the null

hypothesis is rejected, this could happen in equal measure

due to nonlinearity or non-stationarity of the signal, so no

conclusion can be drawn. When fc > 0, the local behavior

of the data is present in surrogates (as in the Fig. 3), despite

of this, the discriminant statistic keeps finding differences

between data and surrogates; this can only happen because

there are nonlinear correlations present in data that are not

in the surrogates. This observation is according to what has

been found using other methods [9]

IV. CONCLUSIONS

The approach proposed in this study is able to provide,

thanks to the use of the band-phase-randomized surrogate

data method, surrogate data that mimic the local behavior

(that may or may not change with time) of a given

time series. This approach permits application of the

surrogate-based test for nonlinearity to a wider class of null

hypothesis, including non stationary behaviors.

Utilization of this methodology extends the applicability

of the nonlinearity test to biological systems from which

stationary signals cannot be extracted. This situation is likely

to occur in spontaneous HRV analysis, where stationarity

may be difficult to attain even in short epochs and during

well-controlled experimental settings [10]. Our results show

that nonlinear correlations are present in HRV signals of

healthy patients, this confirms that nonlinear dynamics are

involved in the genesis of HRV.

It is worth mentioning that as pointed out by many authors

[2], [5], the linear surrogate data methods are only suitable

for stochastic like data, and as the present methodology is

based on that, the same limitation applies.
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