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Abstract— A methodology for wavelet synthesis based on
lifting scheme and genetic algorithms is presented. Often, the
wavelet synthesis is addressed to solve the problem of choosing
properly a wavelet function from an existing library, but which
may be not specially designed to the application in hand.
The task under consideration is the identification of epileptic
seizures over electroencephalogram recordings. Although basic
classifiers are employed, results rendered that the proposed
methodology is successful in the considered study achieving
similar classification rates that had been reported in literature.

I. INTRODUCTION

Wavelet analysis has been widely used in bioelec-
tric signals including electroencephalogram (EEG), evoke–
related potentials, microelectrode recordings, electrocardio-
gram, among others [1]–[3]. Although there are plenty of
wavelet prototypes in the literature, there is not an established
rule that states which wavelet should be used for each
application. Instead, it is usual to test, more or less arbitrarily,
different wavelet shapes to find the one that suits better.

In the present work, the application under consideration
is the identification of EEG–related seizures, which are
transient signs and/or symptoms of abnormal, excessive or
synchronous neuronal activity in the brain in Epilepsy disor-
ders. Conventionally, a routine EEG 20-minute recording of
the patient’s brain waves is analyzed to evaluate suspected
seizures. Diagnostic difficulties arise when a patient has a
suspected seizure (or a neurological event of unclear etiol-
ogy) that is not obvious in the routine EEG. The current gold
standard is the continuous EEG recording along with video
monitoring of the patient, which usually requires patient
admission. Besides, it is costly and not always available. So,
an automatic system for EEG seizure identification would be
of outstanding help in diagnosis.

To generate a wavelet function, suitable for the EEG–
related seizure identification, several works, which have been
proposed for wavelet synthesis including lifting schemes with
deterministic and evolutionary, may be employed. On one
hand, analytical methods of adaptive synthesis have shown
to be burdensome, owing to the complexity of mathemat-
ical conditions on orthogonality, symmetry, compactness,
and smoothness [2], [4]. On the other hand, evolutionary
approaches, such as genetic algorithms (GAs), cultural algo-
rithms, and ant systems had presented newsworthy features
for wavelet design. For example, a completely new wavelet
shape from the analyzed signal is designed in [5] using
an ensemble of GA and Lagrange optimization. In this
line of analysis, additional speed improvements to the GAs

with the ant systems are introduced in [4], reporting better
performance than existing wavelets for signal denoising.

In this work, the capabilities of the lifting schemes, which
are devoted for both wavelet designing and performing the
discrete wavelet transform, are presented. In addition, GAs
are extended for wavelet synthesis. The designed wavelet
function is assumed to exhibit feature spaces with maximum
class separability due to the use of clustering validation mea-
sures as fitness functions within the GA-based optimization
framework.

II. MATERIALS AND METHODS

A. Wavelet Decomposition by Lifting Scheme
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Fig. 1. One step decomposition with the Lifting Schemes

Given a set of samples from a discretized measured
EEG recordings, {𝒙𝑚 ∈ ℝ(𝑇 ) : 𝑚 = 1, . . . ,𝑀},
each one of length 𝑇, then, the input observation matrix
𝒀 = [𝒚1 ⋅ ⋅ ⋅𝒚𝑀 ]⊤, 𝒀 ∈ ℝ

𝑀×𝑛𝑊 is described by both a
𝑛𝜉−dimensional feature set, Ξ = {𝝃𝑖 : 𝑖 = 1, . . . , 𝑛𝜉},Ξ ∈
ℝ

𝑀×𝑛𝜉 and a label set 𝒄 = {𝑐 = 1, . . . , 𝑛𝐶}. Each row of
the input object matrix is accomplished by using wavelet–
based decomposition, that is, 𝒚𝑚 = 𝒲{𝒙𝑚}, 𝒚𝑚 ∈ ℝ

1×𝑛𝑊 .
In this work, the lifting–scheme (LS) wavelet structure
(shown in Fig. 1) is selected because of its flexibility and
fast implementation of the wavelet transform, which not only
allows the analysis of signals but also the design of any bi–
orthogonal wavelet [6].

Implementation of LS involves the following three steps:
division, prediction, and update. In the division step, every
input observation signal 𝒚(𝑙)

𝑖 = {𝑦𝑖(𝑛) : 𝑛 = 1, . . . , 𝑛𝑊 } is
split into even samples 𝒚

(𝑙)
𝑖𝑒 = {𝑦𝑖(2𝑛) : 𝑛 = 1, . . . , 𝑛𝑊 /2},

as well as into odd samples 𝒚
(𝑙)
𝑖𝑜 = {𝑦𝑖(2𝑛 − 1) : 𝑛 =

1, . . . , 𝑛𝑊 /2} at scale 𝑙. This procedure is also referred
as lazy wavelet. Then in the prediction step, the vector 𝒑

is convolved with 𝒚
(𝑙)
𝑖𝑒 to predict 𝒚

(𝑙)
𝑖𝑜 and for eliminating
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low order polynomials from 𝒚𝑖, and thus, obtaining the
detail symbols at scale 𝑙 + 1, 𝒚

(𝑙+1)
𝑖2 = {𝑦(𝑙+1)

𝑖2 (𝑛) : 𝑛 =
1, . . . , 𝑛𝑊 /(2(𝑙+1))}, which are described as follows:

𝑦
(𝑙+1)
𝑖2 (𝑛) = 𝑦𝑖𝑜(𝑛)−

𝑛𝑝/2∑
𝑟=−𝑛𝑝/2+1

𝑝(𝑟)𝑦
(𝑙)
𝑖𝑒 (𝑛+ 𝑟),

where 𝒑 = {𝑝(𝑟) : 𝑟 = 1, . . . , 𝑛𝑝} are coefficients of
prediction. The super–index (𝑙) indicates the decomposition
level, where 𝑙 = 0 is the input EEG pattern, that is, 𝒚(0)

𝑖 =
𝒙𝑖, and 𝑛𝑝 is the order of 𝒑. Next, in the update stage, an
update on the even samples 𝒚(𝑙)

𝑖𝑒 is accomplished by using the
update vector 𝒖 on the previous symbols 𝒚

(𝑙+1)
𝑖2 , and adding

the result to 𝒚
(𝑙)
𝑒𝑖 .

The update sequence 𝒚
(𝑙+1)
𝑖1 = {𝑦(𝑙+1)

𝑖1 (𝑛) : 𝑛 =
1, . . . , 𝑛𝑊 /(2(𝑙+1))} can be seen as rough view of 𝒚𝑖,

𝑦
(𝑙)
𝑖1 (𝑛) = 𝑦

(𝑙)
𝑖𝑒 (𝑛)−

𝑛𝑢/2−1∑
𝑗=−𝑛𝑢/2

𝑢(𝑗)𝑦
(𝑙)
𝑖2 (𝑛+ 𝑗 − 1),

where 𝒖 = {𝑢(𝑗) : 𝑗 = 1, . . . , 𝑛𝑢} are update coefficients,
and 𝑛𝑢 is the order of 𝒖.

Grounded on the LS, it is possible to implement the
multi-resolution analysis by applying iteratively the above
described LS steps up to scale 𝑙 over both detail and
approximation coefficients. In particular, a singular basis that
can be obtained is the dyadic, commonly used in the discrete
wavelet transform yielding only 𝑛𝑑 = 𝑙 + 1 wavelet nodes
with fixed logarithmic t-f resolution.

B. Optimization of Wavelet Function

The optimization of the wavelet function relies on the
customization of both LS vectors, 𝒖 and 𝒑, under con-
ditions of compact support, symmetry, linear phase, and
bi–orthogonality, yielding wavelet functions with unique t-f
features. Furthermore, by doing so the resulting object matrix
𝒀 is optimized to exhibit the desire characteristics such as
maximum class separability [1] or auto–similarity preserva-
tion [3]. Taking into account that the present application
is a classification–oriented task, the proposed optimization
procedure depicted in Fig. 2, which is based on GA, incor-
porates clustering validation measures to generate wavelets
that permit the construction of signal representations with
maximum class separability.

Fig. 2. Evolutionary–based optimization procedure for wavelet synthesis.
Notation LS stands for an elemental circuit implementing lifting scheme.

As suggested in [7], to secure the compact support,
symmetry, linear phase, bi-orthogonality of the resulting

wavelet functions, both the symmetrical linear phase and
normalization constraints are introduced, which are also
embedded into the lifting formalism [6]:

𝑝(𝑟) = 𝑝(𝑟 + 1),
∑𝑛𝑝/2

𝑟=1
𝑝(𝑟) = 1/2, (1a)

𝑢(𝑗) = 𝑢(−𝑗 + 1),
∑𝑛𝑢/2

𝑗=1
𝑢(𝑗) = 1/4 (1b)

Once the LS vector orders, 𝑛𝑢 and 𝑛𝑝, are fixed, the GA
must evolve only (𝑛𝑢/2− 1) + (𝑛𝑝/2− 1) values.

Besides, the proposed methodology involves clustering
validation metrics into the GA–procedure. Thus, incorporat-
ing those measures into the LS intends that the resulting dis-
criminant representation maximizes the separability among
patterns to be analyzed. In particular, the The Dunn’s Index
is considered here that is based on geometrical considerations
and defined as follows [8]:

𝑣𝐷𝐼(𝒄, 𝝃) = min
1≤𝑖≤𝑐

{
min

1≤𝑗≤𝑐,𝑖∕=𝑗

{
𝛿(𝝃(𝑖, 𝑙), 𝝃(𝑗, 𝑙))

max∀𝑐{Δ(𝝃(𝑐, 𝑙))}
}}

(2)
where Δ(𝝃(𝑐, 𝑝)) = max𝑗,𝑖∈𝑙{∥𝜉(𝑐, 𝑖)− 𝜉(𝑐, 𝑗)∥𝑓} is the di-
ameter of 𝑖th class, and 𝛿(𝝃(𝑐, 𝑖), 𝝃(𝑐, 𝑗)) = min∀𝑙{∥𝝃(𝑐, 𝑖)−
𝝃(𝑐, 𝑗)∥𝑓} is the distance in terms of 𝑓−norm between 𝑖th
and 𝑗th classes.

C. Construction of the Discriminant Feature Set

Once the wavelet–decomposition is assessed, the feature
matrix Ξ can be constructed by a library of measures taken
form the wavelet nodes. The selection of such measures
should be carried out accordingly to the properties that are to
be highlighted from the biological phenomena. The present
study considers the following set of morphological metrics
that had been already tested in EEG seizure identification
rendering acceptable performance [9]: i) the mean of the
absolute value 𝜉𝑖1(𝒚𝑖1) = 𝑬{∣𝑦𝑖1∣ : ∀𝑖}, ii) the average
power 𝜉𝑖2(𝒚𝑖1) = 𝑬{𝑦2𝑖1 : ∀𝑖}, iii) the standard deviation
𝜉𝑖3(𝒚𝑖1) = 𝑬{∥(𝑦𝑖1 − 𝑦1)∥2 : ∀𝑖}, and iv) the ratio of
the absolute mean values of adjacent bands 𝜉𝑖4(𝒚𝑖1,𝒚𝑖2) =
𝑬{∣𝑦𝑖1∣}/𝑬{∣𝑦𝑖2∣} : ∀𝑖, where 𝒚𝑖1 and 𝒚𝑖2 are two wavelet
nodes with adjacent frequency bands. Notation 𝑬{⋅} stands
for expectation operator. So, the feature vector is constructed
by taking the aforementioned features from each wavelet
node in 𝒀 , thus, Ξ = {𝝃𝑖1, 𝝃𝑖2, 𝝃𝑖3, 𝝃𝑖4 : 𝑖 = 1, . . . , 4} ∈
ℝ

𝑀×𝑛𝜉 , where 𝑛𝜉 = 4𝑛𝑑.

D. Algorithm for Signal Analysis

The algorithm enclosing the above procedure for signal
analysis holds the following steps:

A: Initialize (𝑛𝑢/2 − 1) + (𝑛𝑝/2 − 1) values of the
LS vectors to be optimized, i.e. 𝒑 and 𝒖, with ran-
dom values within the interval [−1, 1]. The remain
values, (𝑛𝑢/2 + 1) + (𝑛𝑝/2 + 1), are calculated
using the linear and normalization constrains: Eq.
(1a) and Eq. (1b), respectively.

B: Extract a subset 𝒙𝑡 ∈ ℝ(𝑇 ), 𝑡 = 1, . . . ,𝑀𝑡, of in-
put signals 𝒙, from the database from each class of
𝒄, 𝑀𝑡 < 𝑀 (subindex 𝑡 stands for training set).
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C: Decompose each pattern with the LS up to level 𝑙,
using the dyadic decomposition yielding 𝑛𝑑 wavelet
nodes that conform 𝒀𝑡,

D1: Perform 𝑀𝑡 feature extractions to device the feature
vector Ξ𝑡,

D2: Compute the clustering validation measure
𝑣𝐷𝐼(Ξ𝑡, 𝒄𝑡) and integrate it into the GA
optimization as fitness function.

F: Evolve the GA until the fixed number of iterations
and, finally, provide optimized LS vectors 𝒑 and 𝒖.

III. EXPERIMENTS AND RESULTS

A. Database

A public EEG dataset, which is available and described in
[10] and includes recordings for both healthy and epileptic
subjects, is used. The complete data set embraces five sets
(denoted A–E) each containing 100𝐸 single-channel EEG
segments, each one having 23.6 s duration. The data were
digitized at 173.61 samples per second using 12 bit resolution
and they have the spectral bandwidth of the acquisition
system, which varies from 0.5 Hz to 85 Hz. Sets A and
B consisted of segments taken from five healthy volunteers
with eyes open and closed, respectively. Sets C, D, and E are
originated from EEG archive of presurgical diagnosis. Sets
C and D contain only activity measured during seizure free
intervals, whereas the set E only contain seizure activity.

In this paper, we study the following four different medical
classification cases created from the above described dataset:

I: Normal and seizures recordings are classified,
namely, A-type EEG segments and the seizure class
including the E-type, respectively.

II: All the EEG segments are used and classified into
two different classes: A, B, C, and D types are
included in the first class and type E in the second.

III: A three-class task, that is, normal, seizure-free and
seizure. The normal class includes only the A-type
EEG segments, the seizure-free class the D-type
EEG segments, and the seizure class the E-type.

IV: All the EEG segments are used classified into three
different classes: A and B types of EEG segments
are combined to a single class, C and D types
are also combined to a single class, and type E
is the third class. Case IV is the one closest to
real medical applications including three categories;
normal (i.e., types A and B), seizure-free (i.e., types
C and D) and seizure (i.e., type E).

B. Off-line Optimization of Wavelet Function

The purpose of the off-line optimization, involving the
design of 𝒖 and 𝒑, is the synthesis of a completely new
application-oriented mother wavelet, based on the GA pro-
cedure, as described in Sec. §II-D. Furthermore, the new
mother functions are expected to generate wavelets with
maximum class separability in the 𝑣𝐷𝐼 sense. In the concern-
ing case, 𝑛𝑢 = 𝑛𝑝 = 6, so that the high and low frequencies
are weighted similarly, 𝑐 = 5, and the fraction value 𝑀𝑡 is
fixed to 30, as studied in a previous work [1].

Regarding the GA, the following five parameters must
be selected: (i) the arithmetic operator, (ii) the mutation
operator, (iii) the population scale, (iv) the number of gen-
erations, and (v) the bounds of iteration. Parameters (i) to
(iv) can be set directly from previous literature. Besides,
the arithmetic crossover and no uniform mutation operators
are employed, as recommended in [5]. And for the sake of
simplicity, the population scale is set to be 30, whereas the
number of generations is set equal to 20. Accordingly, the
working iteration parameters of the GA are selected to range
within the interval [−5, 5], which is regarded to the possible
values for the predictor and update coefficients that meet the
normalization constraints, i.e, Eq. (1a) and Eq. (1b).

At the end, the chromosome length, during the GA proce-
dure, is 2(𝑁/2−1) = 4. To avoid local minimum in the GA
convergence, above steps are repeated ten times with random
initializations. Finally, the best mother wavelet is selected as
the one with the higher 𝑣𝐷𝐼 value. The temporal response
of the wavelets functions along with the filter frequency
response associated to operators 𝒖 and 𝒑, are shown in
Fig. 3, for the considered clustering validation measure.
As seen, results show explicitly the customized temporal
and frequency dynamic that can be achieved through the
optimization methodology. It is important to emphasizes that
achieved wavelet dynamics is barely reached by classical
wavelets since those are not suppose to be designed to the
current application.

C. Validations Strategy and Classifier

Considering that the core of the proposed study is not the
classification stage, but the characterization, basic classifiers
are employed during the EEG seizure identification stage,
i.e., linear Bayes classifier (LDC) and k-nn classifier, be-
cause of its simplicity of implementation. The k-fold cross–
validation approach is used to manage the database. There-
fore, data is randomly divided into two subsets: the training
and validation. The former set comprises 30% patterns, while
the remaining 70% patterns are related to the latter set.
There is no overlapping between sets. Ten folds are randomly
generated for each experiment. Classification performance is
given in terms of the rate of observations correctly classified.

Results presented in Table I shown that the proposed
methodology is successful on the identification of EEG
seizures regarding the four cases under consideration. It is
important to notice that mentioned results are similar to those
presented in literature without using elaborated classifiers,
what is more, employing such classifier along with the
proposed methodology may increase the classification rate
above reported results [11]. In general, it is also appreciable
that the k-nn classifier yielded better performance that the
linear classifier, although, the deviation is just about 1%.

Globally, the post-processing with PCA after the wavelet
decomposition reduces dramatically the dimensionally of the
wavelet–based feature space. Indeed, PCA can be employed
due to the orthogonal representation yielded by the wavelet
decomposition with a minor loss in classification perfor-
mance. Fig. III-C illustrates the fact that PCA convergence
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Fig. 3. Temporal response of the wavelet functions associated to the optimized filters 𝒖 and 𝒑, along with their frequency response. Results are given
considering ten runs of the GA-based optimization with random initializations.

TABLE I

CLASSIFICATION PERFORMANCE. BOLD VALUES ARE RELATED WITH

THE HIGHEST SCORE OBTAINED FOR THE CURRENT EXPERIMENT

Without post–processing With post–processing

k-nn LDC k-nn LDC
Case I 99,83±0,5 97,83±1,7 (1)99,83±0,5 (16)97,83±1,7
Case II 97,47±0,7 96,00±2,1 (5)97,80±0,7 (10)96,47±1,9
Case III 95,00±1,5 86,33±3,4 (2)95,22±1,9 (16)87,00±3,4
Case IV 95,33±1,0 90,87±2,5 (11)95,87±0,8 (15)94,07±1,6

0 5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Principal Components

C
la

ss
if

ic
at

io
n 

A
cc

ur
ac

y 
(%

)

Fig. 4. (Right) Number of PCA components against classification perfor-
mance for the dyadic decomposition. (Left) Number of PCA components
against classification performance for the binary decomposition.

is achieved with few principal components (less than five).
The reduction achieved is about 90% (from ℝ

20 → ℝ
5).

IV. CONCLUSIONS

This paper has presented a methodology for synthesis of
wavelet functions for EEG seizure identification. It intro-
duces several improvements. Firstly, construction of unique
mother wavelets from the signal’s information itself with
adaptable spectral characteristics by mean of genetic al-
gorithms and lifting scheme. Secondly, incorporation of
clustering validation measures that allow the creation of
feature spaces with maximum class separability form the
wavelet coefficients. Thirdly, low dimensional representation
by employing principal components analysis. Finally, high
classification accuracy is achieved in four different clinical
scenarios using basic classifiers.
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