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Abstract— Many stochastic systems show certain trends
which in turn govern their underlying non-stationary time
varying behavior. In order to facilitate efficient quantification
of such signals, their analysis necessitates the use of robust tools
for discerning between different classes of data. Research show
that, use of time-frequency techniques offer intelligible rep-
resentations for non-stationary signals, along with facilitating
computation of instantaneous parameters. Further, in order to
obtain efficient discrimination machine learning (ML) modules
are often used alongside suitable representation techniques.
In this work, we exploit the concepts of ML-kernel functions
directly by incorporating them in the ambiguity time-frequency
(TF) space, thereby obtaining a one-step discrimination between
different non-stationary patterns. The proposed technique is
evaluated for quantification applications for gait signal analysis.
An overall classification accuracy of 93.1% is reported for the
neurological gait database consisting of signals from 16-control
and 13-amyotrophic lateral sclerosis (ALS) subjects. Results
indicate that this scheme offers great potential in designing
robust tools for time-varying signal analysis.

Index Terms— Ambiguity Domain, machine learning, kernels,
non-stationary

I. INTRODUCTION

Most real-life signals carry time-varying characteristics,

making their analysis relatively complex and difficult. This

necessitates the use of efficient schemes, Research in time-

frequency analysis is targeted towards two main objectives:

(i) to define the time-varying spectrum suitably to facilitate

analysis and (ii) to provide efficient computation of the

parameters governing the signal characteristics (such as

instantaneous features).

Owing to the reasonable performance accuracy, the TF

domain is invariably exploited by most of the existing non-

stationary signal analysis schemes. One of the available

variant of TF representation is obtained using the ambiguity

function (AF) which in-turn characterizes the corresponding

time-frequency distribution (TFD) (equations 1). Its corre-

sponding weighting factor (or the kernel φ(θ, t)) controls the

tradeoff between cross-term suppression and the maximum

achievable TF localization.

Cohen’s class of quadratic TFD’s are given by [1],

C(t, f) =
1

4π2

∫∫

M(θ, t)e−tjθe−τjfdθdτ (1)

where, M(θ, t) = φ(θ, t) . A(θ, t). Here, M(θ, t) represents

the characteristic function that differentiates one TFD from

another and is given by the product of the kernel function (φ)
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and the AF. The AF is a two-dimensional function of time

delay and Doppler frequency. Due to the specific positioning

of the auto- and cross-terms [2], this domain has been

successfully employed for applications such as blind source

application [3], interference reduction [4], kernel design for

frequency-modulated signals [5], biomedical signal represen-

tation [6], for detection and estimation applications [4], [7].

The useability of this domain for signal quantification has

been effectively demonstrated for non-stationary pathological

speech database [8].

The present study addresses the issue associated with non-

availability of robust techniques for efficient characterization

of time-varying biomedical signals. Here, we investigate the

effectiveness of incorporating machine learning principles

for design of TF kernels. The rest of the paper is arranged

as follows. Section II highlights the significance of the

ambiguity domain (AD) and discusses the methodology

employed in the design of proposed ML-based TF kernels

in detail. In Section III, the performance evaluation of the

proposed scheme is elaborated. Section IV concludes the

paper emphasizing the main contributions of this study and

provides some future direction. Throughout the scope of this

article, the TF and the ML-based kernels are represented by

ktf and KML respectively.

II. METHODOLODY

Our investigation to cross-validate the significance of

this domain indicates that the auto-terms are concentrated

around the origin and the cross-terms are spread away

from the origin in AD. Also, AD being a correlative

domain, it can be suitably used to capture the short-term

and long-term correlations for a time-series signal. Owing

to these characteristics, we base our kernel design in the

AD-space.

A. Problem Statement

From a signal processing perspective, there can be atleast

two distinct kernel design motives:

(i) ktf : kernel(s) that act like a filter and provides a suitable

representative space for visual analysis of cross-term free

TFDs discriminative feature vectors and

(ii) KML: kernel(s) that are employed in a classifier in order

to achieve higher distance of separability between different

classes of signals.

The main objective of this research work is to efficiently

design a TF kernel in the AD in an effort to obtain an

efficient separation among different signal classes and, in
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turn, to deduce an optimal feature space with a reduced

number of computation steps. A general block diagram

of the proposed approach is shown in Figure 1. Here, the

signal is first transformed into the AD-space and the mapped

coefficients are masked selectively using ktf . The masked

coefficients are then used to define the feature vectors. For

signal discrimination applications, this feature space is then

used in integration with a suitable module (such as pattern

classifier). In the next subsection, the proposed ML-based

kernels (ktfML)are discussed in detail.

B. Proposed Kernel Design

Investigation reveals that TF and most ML-based kernels

share certain significant and similar prerequisites in order for

them to be ably perform in their allotted domains of action.

In this work, some of their common properties are exploited

in the kernel design. Firstly, the TF and the ML kernels needs

to satisfy non-negativity and Mercer’s theorem respectively

in most cases. Mercer’s theorem states that an n x n matrix

(M ) is said to be positive definite if and only if for all non-

zero vectors ’z’ (and z∗ represents the conjugate transpose),

i.e.

Real(z∗Mz) > 0. (2)

The generated set of cross-(or interfering) terms is placed

away from the origin in AD due to the symmetric nature

of this correlative domain. Here, the number of non-zero

elements depends on the amount of frequency interaction

components for each given signal. And owing to the

inherent symmetry among the mapped coefficients (in AF)

Mercer’s condition is satisfied. In addition to Mercer’s

theorem, the kernel design in this domain can be interpreted

as smoothed versions of the Wigner distribution and hence

shows interesting peculiarities regarding TF localization.

In this work, we have proposed the use of two sets of

ML-based kernels: (a) using discriminative kernels and (b)

kernel design using generative versions of AD-map.

(a) Discriminative TF kernels: For any given input

space, X ⊂ Rd, with input vectors ’x’ and ’z’, the kernel

is defined as,

K(x, z) = 〈φ(x), φ(z)〉 (3)

where, φ is a non-linear (or a linear) map from the input

space X to the feature space F , and 〈...〉 is an inner product.

Usually such a kernel is defined explicitly, thereby defining

the map and the feature space. Such a representation is also

symmetric and reversible, K(x, z) = K(z, x) and satisfies

Cauchy-Schwartz inequality,

K2(x, z) ≤ K(x, x)K(z, z) (4)

The main idea underlying the choice of a ML kernel is that

the derived kernel would incorporate the inherent available

non-linearity in feature extraction phase, thereby maximizing

the separability between classes. The ML-based kernel is

then extended for defining the TF distribution, so that a better

representation of time-varying features is achieved. One

such kernel that provides maximum separation, commonly

referred to as the all-subset or the polynomial kernel is used

in this work. The polynomial kernel [9] is represented as,

K(x, z) = (α+ x.z)d (5)

where α is any scalar quantity and d is the order of the

kernel.

Selection of parameters: The choice of ’α’ and ’d’

parameters are governed by AD-map of the signal. To

define these values, the AD-map is divided into bands

based on relative energy distribution ratios [8]. This ratio

provides the relative energy between auto- and cross-term

distributions from the AD-map. From this representation,

the region of auto- and cross-term overlap is approximately

identified using the energy spread factor and the maximum

energy distributed between successive bands. That is, in AD

the energy map usually resembles a bell-shaped distribution

and in regions where there are more cross-terms, the

maximum energy decreases alongside a decrease in the

signal spread. Once the region (band number ’n’ from the

origin) is obtained, the maximum energy for all signals

under consideration is computed. thereafter the median

value obtained from the ranked maximum energies, is then

assigned to ’α’ and the parameter ’d’ is computed as 2n.

Having defined the parameters, the kernel function is

then incorporated in the characteristic function, thereby

defining a new TFD for non-stationary signal analysis. The

autocorrelation function or the AF of the TFD is defined as,

A(θ, t) =

∫

x(t−
τ

2
)x∗(t+

τ

2
)e−jθtdt (6)

By substituting (5) and (6) in the characteristics equation,

MML(θ, t) =

∫

K
{(

x(t+
τ

2
), x∗(t−

τ

2
)
)}

e−jθtdt (7)

The corresponding TFD can then be obtained by computing

the Fourier transform of (7). Similarly, AD-based kernel

expressions were deduced for two other widely used SVM

kernel functions, namely the linear and the Gaussian kernel.

(b) Generative TF kernels: The second set of kernel

is defined by exploiting the different generative models

used in ML approaches. Since AD is a correlative energy

domain, in order to efficiently control the influence of

data lengths and spectral spread, we propose to define a

kernel that uses the normalized derivatives of AD-mapped

signal components. Such a kernel results in generation

of identical and independent distribution datasets and in

turn can facilitate discrimination among different signal

classes during time-varying signal analysis. The underlying

principle is that, the expectation of any AF-transformed input

is maximized to obtain better discrimination. The mapped

space is transformed such that the new representation is of

the form,

φ =

[

ln(anw
′

)

anw
′

]

(8)
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Fig. 1. General Block Diagram of the Proposed Scheme

Where an represents the set of normalized AD-mapped

coefficients and w′ represents the transpose of the weighting

coefficients.

Choice of w: From the AD-map, the maximum intensity in

the time-lag axis is computed as the sum of all the energy

terms across the entire set of rows for each available index.

Similarly, the sum vector along the Doppler frequency axis

of AD is calculated. The normalized weighting vector (w)

is then defined by computing the dot product of the row

and column sum vectors multiplied with the inverse of

the maximum energy and an optimal value is calculated

across the entire dataset. Such a product usually results in

decreased weighting about the origin, since those auto-terms

do not contribute towards the overlapping regions with

cross-terms.

C. Feature Extraction

After transforming the time-varying signal using a kernel

map, three unique feature vectors were derived from the AD-

representation plot, given by equations (9), (10) and (11).

Owing to the unique representation that the AD-space offers,

the extracted feature set can be used to optimally characterize

the auto- and cross-term energy spread in the mapped signal.

(a) Total Energy (TE): Computed as sum of all energy terms

whose value exceeds a certain set threshold.

TE =
∑

|MML|≥Mth

|MML|
2

(9)

(b) Total Energy Outside the Origin (TEo): Calculated as

the total energy spread outside the origin (satisfying the

threshold criteria).

TEo = TE − |MML(0, 0)|
2

≥Mth
(10)

(c) Sum of Diagonal Terms (SDE): Sum of all the diagonal

terms in the AD-SVM coefficient matrix.

SDE =
∑

diag (MML) (11)

III. RESULTS

A. Experimental Dataset

In order to evaluate the performance of the proposed

scheme, we use the gait dataset obtained from normal and

ALS-affected subjects from Physionet [10]. The gait database

contains real-life gait signals acquired from both healthy

and pathological subjects with ALS. The gait time-series

signal is computed by measuring the signals across the

force-sensitive insoles that are placed under the subject‘s

foot. During the experiments, the subjects were asked to

choose their comfortable walking pace along a 77m long

hallway. The stride to stride measurements are then recorded

over a 5 minute interval. The ALS subjects were not using

a wheelchair for mobility and were not diagnosed with

any other ailments that might affect the gait stride-to-stride

variability. Also, about 80% of the patients shared moderate

severity for the disease. Overall, 16 healthy subjects (2 men

and 14 women) aged 20-74 years, and 13 ALS subjects (10

men and 3 women) aged 36-70 years contributed to the gait

dataset.

B. Performance Assessment

Because accurate characterization, and not visual

appearance, is our sole design criterion, the designed

kernels does not necessarily provide a visually satisfying

representation and owing to which we base our discussion

on the obtained performance accuracies. Our initial

assessment involved evaluating the proposed discriminative

and generative TF kernels for the normal and ALS gait

datasets. The results obtained were comparable for both

these kernels and hence, we limit our discussion to the

effectiveness of the extracted set of novel feature vectors,

for signal quantification. The obtained values are compared

to certain previously used classification schemes due to

the non-availability of benchmark schemes that involved

exploiting machine learning concepts for design of time-

frequency decomposition techniques.

The input signal is mapped on to the Hilbert space

using the ktfML kernel. To verify the discriminative

capacity of the proposed kernels, feature vectors are

extracted from gait (control and ALS) and is then fed to a

Leave-One-Out (LOO) linear discriminant analysis (LDA)

classifier. Table I shows the obtained classification results.

An overall maximum accuracy of 93.1% is obtained by

employing the AD-ML kernel mapping along with the

newly deduced feature vectors. The obtained performance

measures correspond to a 3% increase over the reported

current maximum [11] that can be achieved using any gait

classification scheme.
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TABLE I

CLASSIFICATION ACCURACIES OBTAINED USING AD-ML KERNELS

Gait Type Control ALS Total

Control 93.8% 6.2% 100%

ALS 7.1% 92.3% 100%

C. Discussion

Figure 2 shows the obtained box plot for the extracted

feature vector for control and ALS subjects, respectively. It

can be noted that the ALS inter-quartile range (IQR) falls

in the mild outlier zone of the control subjects’ feature plot.

However, the median values and the IQR for both the data

set are placed far apart. This in turn implies that the extracted

feature set have good discriminative capacity between both

the classes (’ALS’ and ’Control’). The obtained quantitative

results were also compared to two of the published high per-

formance works. Wang et al [12] used the human movement

information along with a combination of static and dynamic

biometrics and reported a maximum classification accuracy

(using nearest-neighbour classifier) of 87.5%. While Wu et al
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Fig. 2. (left: Control and right: ALS) Box plot of gait TEos

[11] conducted a series of analysis, for classification among

control and ALS-affected subjects using an individual’s gait

and have reported an overall accuracy rate of 82.76% and

89.66% obtained using a LDA-based and non-linear classifier

respectively [11]. It is to be noted that the above mentioned

works employed non-linear classifiers and in comparison

the proposed research direction offers comparable and in

certain cases better discrimination. Based on the computed

accuracy measures, atleast 3% improvement in signal pattern

identification is obtained when the ML-based kernel design

is incorporated in AD, in contrast to use of available TF

kernels. The above performance metrics indicate that the

use of AD-ML kernels offer a new direction in TF kernel

design and can facilitate better characterization of biomedical

signals.

IV. CONCLUSION

In this paper, the usability of the ML concepts for design

of TF kernels that facilitates time-varying signal analysis is

investigated in detail. Most existing research is concentrated

on developing representation schemes for signal visualization

(wherein the cross-terms are filtered out) and limited focus

is available for signal quantification works. In this work, a

novel method to quantify and visualize non-stationary signals

is proposed which takes into consideration the cross-term

energy distribution during signal characterization. Such an

approach exploits the collective advantages of the AD-based

TF schemes and the ML kernels. The newly derived AD-

ML kernels offers efficient linear discrimination between

different patterns with the aid of minimal number of feature

vectors and a maximum overall classification accuracy of

93.1% is obtained. The proposed kernels show a lot of

potential in discriminative analysis and further investigation

on these kernels on large datasets will facilitate development

of nearly-unified robust schemes for non-stationary signal

analysis.
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