
  

  

Abstract— In ultrasound elastography, tissue axial strains 
are obtained through the differentiation of measured axial 
displacements. However, during the measurement process, the 
displacement signals are often contaminated with de-
correlation noise caused by changes in the speckle pattern in 
the tissue. Thus, the application of the gradient operator on the 
displacement signals results in the presence of amplified noise 
in the axial strains, which severely obscures the useful 
information. The use of an effective denoising scheme is 
therefore imperative. In this paper, a method based on a two-
stage consecutive filtering approach is proposed for the 
accurate estimation of axial strains. The presented method 
considers a cascaded system of a frequency filter and a time 
window, which are both designed such that the overall system 
operates optimally in a mean square error sense. 
Experimentation on simulated signals shows that the two-stage 
scheme employed in this study has good potential as a denoising 
method for ultrasound elastograms. 

I. INTRODUCTION 
 ltrasound elastography is a relatively new medical 
technique which can provide images of the strain 

distribution of soft tissue under static compression [1]. It is 
most commonly used to reveal changes in the tissue stiffness 
which may be due to abnormal pathological processes, such 
as cancer. A strain image is obtained by reconstructing the 
mechanical properties of the tissue based on measurements 
of internal deformations when small amounts of external 
compression are applied to the tissue. The exerted 
compression induces a displacement of the non-uniformities 
in the tissue which can cause scattering of the ultrasound 
wave. Thus, by comparing ultrasound readings before and 
after compression the induced displacement of the tissue can 
be determined [2]. Finally, the strains are calculated as the 
first-order derivatives of the measured displacements. The 
resulting strain matrix which is typically displayed as a grey 
scale image is called the elastogram. 

Unfortunately, the spatial distribution of the tissue 
scatterers used for displacement tracking undergoes changes 
under the applied compression (speckle pattern de-
correlation) and thus, the measured displacements become 
corrupted with noise. Although the statistics of this noise are 
unknown, the desired signal consists largely of low 
frequencies apart from the areas of the boundary between the 
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(healthy) medium and the (potentially malicious) inclusion, 
where relatively higher frequencies are present. Since the 
gradient operator is known to boost high frequencies the 
noise components mainly dominate the resulting elastogram. 
Denoising of the elastogram is clearly necessary; however, 
the application of a conventional low-pass filter is 
problematic due to the global effect of the cut-off frequency 
on the signal. If the cut-off threshold is set too low then 
noise will be eliminated at the expense of a loss of resolution 
around the boundary of the inclusion. On the other hand, if 
the cut-off is set higher then undesirable amounts of noise 
will also pass through. Therefore, any scheme based on a 
single filter would be unable to denoise elastography signals 
effectively. 

Alternative denoising methods such as those based on 
discrete wavelet transforms (WT) [3], [4], fractional Fourier 
transform (FrFT) [5] and short-time Fourier transform 
(STFT) [6] have been proposed for the accurate estimation 
of strain signals. Despite the preliminary nature of the above 
works, the presented results appeared promising. However, a 
number of limitations seem to be inherent in those 
approaches. For example, the efficiency of wavelet 
denoising heavily relies on a number of factors such as the 
choice of basis functions, the number of decomposition 
levels, and the thresholding strategy. Even worse, the 
truncation of wavelet coefficients often generates 
interference in the form of pseudo-Gibbs artifacts. 
Meanwhile, the efficiency of methods based on the FrFT and 
STFT – at their current phase – also depends on empirically-
determined parameters. 

The method proposed here is based upon the idea of 
filtering consecutively in different domains [7]. Such an 
operation was shown to potentially outperform any single-
stage filtering approach. In this work, a two-stage denoising 
system is employed which consists of a Fourier-domain 
filter followed by a time-domain window. Following the 
method in [7] both the frequency response of the filter and 
the shape of the time window are designed such that the 
overall system yields an optimal result in a mean square 
error sense. We further compare the performance of the 
proposed method with that of a single-stage optimal filter as 
well as with the STFT and FrFT-based approaches using 
simulated elastograms. 

Section II provides a concise overview of the theoretical 
background and describes the algorithm. In section III, 
experimental results are provided. Conclusions are finally 
drawn in section IV.  
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II. THEORETICAL BACKGROUND 

A. Optimal frequency-domain filter 
In measurements under additive noise, the following 

observation model can be assumed in discrete form: 
࢟        ൌ ࢞   (1)                                       ,  

where ࢟, ,࢞  are column vectors of size N representing the 
acquired signal, the ideal process, and the noise realisation, 
respectively. The goal of the filter is to find an estimate, ܠො , 
which would be as close as possible to the ideal ࢞. A natural 
optimality criterion is the mean square error (MSE), which 
can be defined as: mseሺܠොሻ ൌ ଵN Eሾ|ܠො െ  ଶሿ ,                           (2)|ܠ

which, due to Parseval’s relation is also equal to: 

mse(܆ሻ ൌ  ଵN Eሾห܆ െ  หଶሿ,                           (3)܆

where ܆ is the Fourier transform of ܠො, i.e. ܆ ൌ  ො, with Fܠ ܨ
being the DFT matrix. For the common setting depicted in 
Fig. 1a it holds that: ܆ ൌ  (4)                     ,ࢅ߉

where ܇ ൌ  is a diagonal matrix whose non-zero ߉ and ,࢟ܨ
elements (h0,h1,…,hN-1) form the frequency response of the 
filter. By minimising (3) with respect to (h0,h1,…,hN-1) the N 
components of the optimal frequency response can be 
determined as: ݄୭୮୲,୧ ൌ EሾXሺ୧ሻYכሺ୧ሻሿEሾYሺ୧ሻYכሺ୧ሻሿ                ݅ ൌ 0,1, … , ܰ െ 1 .       (5) 

Under the assumption that the noise is independent of the 
ideal signal, (5) can be expressed as: ݄௧, ൌ  ாൣ|ሾሿ|మ൧ாሾ|ሾሿ|మሿାாሾ|ேሾሿ|మሿ ,      (6) 

which is the ensemble average energy density of the signal 
at the frequency sample i, divided by the sum of the 
ensemble averages of the energy densities of the signal and 
noise at the same frequency sample. 

B. Optimal two-stage filtering system 
Considering the system configuration shown in Fig. 1b, 

the estimate ܠො is equal to: 

ොܠ                       ൌ  (7)                                 , ࢟ܨଵ߉ܨଶ߉

where  

߉ ൌ ێێۏ
,ଵ݄ۍێ 0 ڮ 0 0ڭ00 ڰ 00ڭ0 0 ڮ 0 ݄,ேۑۑے

 k=1, 2        , ېۑ

with ࢎ ൌ ݀݅ܽ݃ሺ߉ሻ, i.e. ࢎ ൌ(h1,0,h1,1,…,h1,N-1) and ࢎ ൌ(h2,0,h2,1,…,h2,N-1), being the frequency response of the 
filter and the window function, respectively. The objective is 
then to determine the optimal ࢎ and ࢎ which minimise 
(2). The non-linearity of the problem makes it difficult to  
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(b) 

Fig. 1 (a) Block diagram of a single stage filter, (b) Block diagram of the 
two-stage filtering approach. 

 
find an analytic solution. A usual approach in such 
optimisation problems is to adopt an iterative procedure in 
which one function is optimised at a time by keeping the 
other fixed to its values obtained during the preceding 
iteration. Such an approach has also been followed in [7] and 
is briefly summarised in the following paragraphs.   

At the beginning, both the diagonal matrices ߉ଵ and ߉ଶ 
are initialized to identity matrices. Then, starting with the 
first function ࢎ, an estimate for its optimum expression can 
be calculated based on (5).  

In the second iteration, the preliminary solution for ࢎ is 
used to obtain an initial estimate of the optimum ࢎ. Thus, 
(7) can be written as  ܠො ൌ ܣ where ,࢟ܤଶ߉ܣ ൌ  the identity) ܫ
matrix) and  ܤ ൌ ࢎ :Minimising (2) yields [7] .ܨଵ߉ܨ ൌ  (8)         , ࢉଵିܦ

where   ܦ ൌ  ሺܣுܣሻ כ ൫ܴܤ௬௬ܤு൯்
, and ‘*’ denotes the 

element-wise multiplication between two matrices, whereas  ࢉ ൌ ݀݅ܽ݃൫ܣுܴ௫௬ܤு൯. Also, ܴ௫௬ ൌ ுሿ   and   ܴ௬௬࢟࢞ሾܧ ൌܧሾ࢟࢟ுሿ are correlation matrices, which under the 
assumption of the noise being independent of the ideal signal 
can also be obtained as ܴ௫௬ ൌ ܴ௫௫ and  ܴ௬௬ ൌ ܴ௫௫  ܴ. 

The third iteration focuses back on ࢎ with (7) now 
expressed as  ܠො ൌ ܣ where ,࢟ܤଵ߉ܣ ൌ ܤ  and ܨଶ߉ ൌ  By  .ܨ
minimising (2) the solution is obtained similarly to (8), i.e.  ࢎ ൌ  with D and c having the same structure as , ࢉଵିܦ
before. 

The above steps are repeated with ࢎ and ࢎ being 
updated accordingly at each iteration. Once the solutions 
converge the iterations stop. 

C. Best-case scenarios 
  The motivation for investigating the above two-stage 

filtering scheme as a possible method for enhancing 
ultrasound elastograms arises from the performance 
advantages that this approach may have over a simple 
single-stage filter. To illustrate this, we compare the best-
case scenarios for both filters, i.e. assuming that the statistics 
of the ideal signal and the noise are known, we examine 
what is the optimal result that can be achieved by each of the 
two methods.  
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Fig. 2a depicts a noise-free (ideal) simu
and Fig. 2b shows a realization of the corru
The denoised result of the single-stage 
presented in Fig. 2c, whereas the resu
application of the two-stage scheme is show
clear that the second method yields a muc
estimate of the ideal elastogram. 

 
 

 
(a) 

 
(c) 

Fig. 2. (a) Simulation of ideal elastogram, and (b) co
(SNR= – 16.28dB). Recovered elastogram after den

single-stage optimal filter, and (d) the optimal tw
 

III. EXPERIMENTAL RESULT

The tissue displacement data that w
experiments was simulated using the two-d
analytic model equations introduced by M
An ideal mechanical strain image using
depicted in Fig. 2a. The model assumes th
subjected to an inward uniaxial compres
under the condition that the strain is minim
direction of the plane (plane-strain state). T
the simulated phantom was 100 x 100mm w
radius of 10mm which is assumed to be 4 
the background medium. 

Zero-mean white Gaussian noise wa
displacement at a signal-to-noise (SNR) ra
axial strain was computed using firs
differences of the noisy displacement i
horizontal direction. The resulted elastogram
– 16.28 dB. Fig. 3a shows the central 
realization of the displacement while Fig.
corresponding central slice of the elastog
amplification of the noise due to the differ
and the consequent distortion of the ela
appreciated. 

ulated elastogram, 
upted elastogram. 
optimal filter is 

ult based on the 
wn in Fig. 2d. It is 
ch more accurate 

 
(b) 

 
(d) 

orrupted elastogram 
noising with: (c) the 
wo-stage system. 

TS 
was used in our 
dimensional (2-D) 

Muskhelishvili [8]. 
g this model is 

hat the tissue was 
ssion of 314 Pa, 

mal in the outward 
The dimension of 
with an inclusion 
times stiffer than 

as added to the 
atio of 40dB. The 
st-order forward 
image along the 
m has an SNR of 
slice of a noisy 
. 3b presents the 

gram. The severe 
rentiation process 
astogram can be 

        (a) 
Fig. 3. (a) Noisy displacement profile tak

displacement image (b) Calculated axial st
along the center of the resulting elastogram

strain (solid line
 
 
The contrast-to-noise ratio (CNR

used in our experiments to quantify
different methods and facilitate com
CNRe is defined as: CNRୣሺdBሻ ൌ 20logଵ ൬
where ߤs1 and ߤs2 represent the me
inclusion and the medium, and ߪs1 
variances, respectively. A high CN
elastogram whereas low values of th
image. 
    Along with the single-stage Fou
stage filtering system described in
recently proposed methods have 
conducted experiments. The FrFT-
[5] and the masked STFT scheme
applied to the same noisy realiz
elastogram that was used for all th
parameters required for the latt
determined empirically as this wa
respectively. For the given real
method achieved a CNRe value o
masked STFT approach resulted in 
resulting elastograms are shown in F
the axial strains corresponding to 
filtered elastograms are compared in
 Both equations (6) and (8) refer to
ensembles of realizations of the idea
a real-world experiment these wou
therefore need to be estimated. In t
simulated elastogram as an exp
therefore assuming that the ideal sig
we generated a number of estimate
low-pass filtering simulated noisy 
cut-off frequencies. The simulated 
represent repeated ultrasonic mea
tissue area under varied compres
ensemble was created by generat
realizations and then taking their 

 

        (b) 
ken along the center of the 
train slice (dotted line) taken 

m contrasted to the ideal axial 
e). 

Re) proposed in [9] was 
y the performance of the 
mparisons between them. 

൬ଶሺμ౩భିμ౩మሻమ൫σ౩భమ ାσ౩మమ ൯ ൰                (9) 

an value of strain in the 
and ߪs2 denote the strain 

NRe signifies a readable 
his metric indicate a poor 

urier filter and the two-
n Section II, two other 

been included in the 
-based denoising method 
e described in [6] were 
zation of the simulated 
he presented results. The 
ter two methods were 
as done in [5] and [6], 
ization the FrFT-based 

of 65.69dB whereas the 
a value of 60.60dB. The 

Fig. 4c and Fig. 4d, while 
the central slices of the 

n Fig. 5c and Fig. 5d. 
o averages obtained from 
al and noise processes. In 
uld not be available and 
this work, we treated the 
perimental measurement 
gnal is unknown. Instead, 
s of the ideal process by 
elastograms at different 
noisy elastograms could 

asurements of the same 
ssion levels. The noise 
ting a number of noise 

first derivative. In the 
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clinical lab, this could be replaced by a few 
healthy tissue displacements, which w
differentiated with their offset being subseq
    Based on the above sets, estimates of the
and ܴ were obtained and used for the 
multiplicative functions of the methods in
proposed two-stage filter resulted in a 
66.93dB whereas the single-stage filter a
ratio of 49.08dB. The resulting elastogram
Fig. 4a and Fig. 4b. The central slices
elastograms are compared in Fig. 5a and Fig

IV. DISCUSSION 
We have presented a new approach

ultrasound elastograms. The method is base
system comprising two multiplicative fun
one is applied in the frequency domain and
time-domain. The overall system was 
minimum variance estimator and the two
optimized accordingly. Using simulated d
the potential advantages of this metho
elastograms in comparison with Fourier fil
with two more modern approaches based o
the FrFT. The experimental outcomes i
method can outperform the other schemes w
achieved CNRe values, and also accordin
inspection of the resulting elastograms sugg
noted that each of the two modern approa
our comparisons had independently been s
be superior to commonly used denoising ap
elastogram. It should also be noted that the
employed here will not usually converg
minimum solution [7]. However, we w
concerned with this since the quality of the
was satisfactory. Further experimentation i
data will have to follow in order to v
approach and fully assess its advantages and
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