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Abstract— The influence of family history and genetics on
the risk for the development of abuse or dependence is a
major theme in alcoholism research. Recent research have
used endophenotypes and behavioral paradigms to help detect
further genetic contributions to this disease. Electronic tasks,
essentially video games, which provide alcohol as a reward in
controlled environments and with specified exposures have been
developed to explore some of the behavioral and subjective char-
acteristics of individuals with or at risk for alcohol substance
use disorders. A generative model (containing parameters with
unknown values) of a simple game involving a progressive
work paradigm is described along with the associated point
process signal processing that allows system identification of
the model. The system is demonstrated on human subject
data. The same human subject completing the task under
different circumstances, e.g., with larger and smaller alcohol
reward values, is assigned different parameter values. Potential
meanings of the different parameter values are described.

I. INTRODUCTION

A major theme in alcoholism research is the influence

of genetics on risk, e.g., [1]. Accurate endophenotyping

is critical for genetic studies. However, characterization of

human use of alcohol in the community, particularly in those

with a substance use disorder, is difficult. One approach is

to replace community use by use in controlled laboratory

settings, e.g., [2].

O’Connor and colleagues have developed electronic cog-

nitive tasks, essentially video games, where alcohol is the re-

ward based upon completion of a progressive work paradigm.

These paradigms provide a measure of how much effort

a human subject is willing to invest in order to receive

alcohol. In a progressive work game, the first dose of alcohol

(given by intravenous infusion) requires relatively little work

but the amount of work required to get successive doses

progressively increases. Using the ideas of [3], the dose can

be normalized to achieve brain alcohol concentration changes

that are the same for all subjects independent of age, sex,

weight, etc.

The most simple such game is considered. Specifically,

the “work” consists of a simple button press with a schedule

that prescribes a strictly increasing number of presses to
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receive the next successive dose of alcohol. The rate of button

presses is limited; more than four presses per second were

not counted. The subject knows whether a particular button

push is counted. When a dose of alcohol is received, there

is a pause while the subject receives the alcohol reward and

any self-imposed delay at the beginning of the next work set.

For that reason, our generative model is really a model for

one epoch between doses of alcohol. The game is explained

to the subject but no goal is imposed on the subject.

The manner in which the subject plays the game of the

previous paragraph is exactly described by the sequence of

times at which the subject presses the button. Therefore, a

point process model, whose arrivals are the button-pressing

times, provides a generative model of the subject’s perfor-

mance and a basis for analyzing the subject’s performance.

The point process model is described Section II, a method

for computing the parameters of the model is described in

Sections III-IV, and simulations and experimental results are

given in Sections V–VI.

II. A POINT-PROCESS MODEL

Let t ∈ [0,∞) be time. A point process is a stochas-

tic process N(t) which takes values in {0,1,2, . . .} where

N(t) evaluated at a time t0 is the number of arrivals that

have occurred between the starting time t = 0 and time

t0. The interarrival times of the point process are the time

intervals between arrivals, i.e., the time intervals between

the step increases in N(t). The simplest point process is

the Poisson process, which is completely described by a

single positive real number, denoted by λ , which is the rate.

In this process, the interarrival times are independent and

identically distributed with an exponential probability density

function (pdf) with parameter λ and this property (along

with the choice that N(0) = 0) is one of the many equivalent

definitions for the Poisson process.

The point process used to model the button presses is

more general than the Poisson process, in particular, is a

doubly-stochastic Poisson process [4, Chapter 7] in which λ
is not a deterministic constant but instead is itself a stochastic

process. This allows the model to describe the idea that the

human subject’s pattern of button pushes can change over

the course of the video game experiment. In particular, λ (t)
is related to a first-order Gauss Markov process, which is

denoted by x(t), by the following equations:

λ (t) = exp(µ + x(t)) (1)

dx/dt = αx(t)+w(t) (2)
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where w(·) is a zero-mean Gaussian white noise process with

power spectral density N0/2, the value of x(0) is chosen so

that x(·) is a wide-sense stationary stochastic process, and

the three parameters in the model, all real valued, are µ , α ,

and N0/2. The meanings of the parameters are described in

the following paragraph.

Because x(·) is wide-sense stationary and Gaussian, x(·) is

completely described by its mean function (denoted by x̄(t))
and auto correlation function (denoted by Rx(τ)) which have

values

x̄(t) = E[x(t)] = 0 (3)

Rx(τ) = E[x(t)x(t − τ)] = σ2 exp(−|τ|/α) (4)

where E[·] is expectation. (One implication of these results

it that the statistics of x(·) and −x(·) are identical). Based

on Eq. 4, the characteristic time over which changes in

x(·) occur is 1/α and the power in x(·) (i.e., Rx(τ = 0))
is controlled jointly by α and N0/2. Based on Eq. 3,

the parameter µ controls the typical value of the time-

varying rate λ (t). Finally, the exponential function in Eq. 1

transforms a stochastic process that takes values in (−∞,+∞)
into a stochastic process that takes values in (0,∞) which is

necessary if λ (·) is to be interpreted as a rate. While other

transformations would also achieve this goal, choosing λ (t)
as an exponential furthermore allows exact computation of

certain expectations in Section IV.

As will be described in Section IV, we compute certain

expectations based on the idea that the rate λ (·) is constant

over intervals of duration ∆. Therefore, in order to make

this choice exact rather than an approximation, we replace

Eqs. 1–2 by the discrete time (sampling interval ∆) system

λn = exp(µ + xn) (5)

xn+1 = ρxn +wn (6)

where wn is a zero-mean Gaussian white noise process with

variance σ2. Therefore the three parameters in the model, all

real valued, are µ , ρ , and σ2 and

x̄n = E[xn] = 0 (7)

Rx(l) = E[xnxn−l ] = σ2ρ−|l|/(1−ρ2). (8)

III. SYSTEM IDENTIFICATION VIA MAXIMUM

LIKELIHOOD PARAMETER ESTIMATION

Given the sequence of arrival times (i.e., button pressing

times) on the interval [0,T ], the goal is to determine the

values of the parameters µ , ρ , and N0/2 in Equations 1-2.

This estimation problem is solved by a maximum likelihood

(ML) estimator, i.e., the estimated values of µ , α , and N0/2,

denoted by µ̂ , α̂ , and N̂0/2 are defined by

µ̂, α̂, N̂0/2 = arg max
µ,α,N0/2

p({N(t) : 0 ≤ t ≤ T}|µ ,α,N0/2) (9)

where p(·|·) is the conditional pdf on the arrival times

given the parameter values. To solve this problem requires

dealing with the real-valued time of each arrival. In order to

formulate a simpler discrete-time problem [5], the arrivals

are lumped into time bins of width ∆ and the data is taken

to be the number of arrivals in the bins, which is denoted by

dNk for the kth bin, i.e., dNk = N(∆(k + 1))−N(∆k),where

k ∈ 0, ...⌊(T/∆)⌋−1. The corresponding equations for the

dynamical system are Eqs. 5–6. Then Eq. 9 is replaced by

µ̂, ρ̂, σ̂2 = arg max
µ,ρ,σ2

p({dNk : k ∈ {0, . . . ,K}}|µ ,ρ,σ2) (10)

where T = K∆.

Let dN without a subscript be the entire trajectory of

dNk for k ∈ {0, . . . ,K} and likewise for x and xk. Let θ =
(µ ,ρ,σ2). Then p(dN|θ ,x) = ∏K

k=1 f (dNk; exp(µ +xk−1)∆),
where f is the Poisson probability mass function, and

p(dN|θ) can be computed from p(dN|θ ,x) by multiplying

by the pdf p(x|θ) and integrating with respect to x.

IV. COMPUTATION OF THE MAXIMUM

LIKELIHOOD ESTIMATOR

An expectation-maximization (EM) algorithm [6] is

used to compute the ML estimate described in Eq. 10.

The nuisance parameters in the algorithm are x. Let

θ (l) be the parameter values θ at the lth itera-

tion of the EM algorithm. The expectation step is to

compute Q(θ |θ (l)) =
∫

ln[L(θ |dN,x)]p(x|dN,θ (l))dx where

L(θ |dN,x) = p(dN,x|θ (l)) and the maximization step is to

determine the θ which maximizes Q(θ |θ (l)). The new esti-

mate of the parameters, denoted by θ (l+1), is this maximizing

value of θ .

An iteration of the EM algorithm for this problem has

two parts. The first part is to compute first and second order

conditional moments of x given the data dN. Q can be written

in terms of these moments and the second part is to determine

the value of θ that maximizes Q, which can also be written in

terms of these moments. The necessary moments are xk|k
.
=

E[xk|{dNl : l ∈ {0, . . . ,k}}], σ2
k|k

.
= E[(xk − xk|k)

2|{dNl : l ∈

{0, . . . ,k}}], Wk
.
= E[x2

k |{dNl : l ∈ {0, . . . ,K}}], and Wk,k−1
.
=

E[xkxk−1|{dNl : l ∈ {0, . . . ,K}}]. In terms of these moments,

the exact θ = (µ ,ρ,σ2) that maximizes Q is

ρ(l+1) =
∑K

k=1 Wk,k−1

∑K
k=1 Wk−1

(11)

(
σ2

)(l+1)
=

1

K

{
Wk −2ρ(l+1)Wk,k−1 +

[
ρ(l+1)

]2

Wk−1

+W0

[
1−

[
ρ(l+1)

]2
]}

(12)

µ(l+1) = ln
K

∑
k=1

dN(k∆)

− ln
K

∑
k=1

exp(xk|K +(1/2)σ2
k|K)∆. (13)

Eq. 13 benefits from the choice of an exponential in Eq. 5

because that choice leads to computing the expectation of

the exponential of a Gaussian random variable (essentially

xk), which can be done exactly via log-normal methods.

Unlike Eqs. 11–13, which are exact, the computing of the

moments cannot be done exactly with a feasible amount of
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calculation. In the calculations reported in this paper, the

method used is based on several nonlinear filtering ideas.

The calculations divide into two phases which are a forward

filtering phase and a backward smoothing phase. The forward

phase equation for xk|k is computed by finding the value

of xk|k that maximizes Q, and hence taking a maximum

likelihood approach. The forward phase equation for σ2
k|k

is calculated by setting the variance of the Gaussian random

variable to the inverse of its Fisher information matrix [7].

The equations for xk|k−1 and σ2
k|k−1

follow standard Kalman

filter equations [8]. The results are

xk|k = ρxk−1|k−1 +σ2
k|k−1[y(k∆)− exp(µ + xk|k)∆ (14)

σ2
k|k = −

[
−1/σ2

k|k−1 − exp(µ + xk|k)∆
]−1

(15)

xk|k−1 = ρxk−1|k−1 (16)

σ2
k|k−1 = ρ2σ2

k−1|k−1 +σ2 (17)

where Eq. 14 is solved for xk|k by a Newton method and

the initial conditions are x0|0 = x0 and σ2
k|k = σ2(1−ρ2)−1.

The backward phase uses the backwards part of a forward-

backward Kalman smoother [9]:

Ak = ρσ2
k|k(σ

2
k+1|k)

−1 (18)

xk|K = xk|k +Ak(xk+1|K − xk+1|k) (19)

σ2
k|K = σ2

k|k +A2
k(σ

2
k+1|k −σ2

k+1|k) (20)

where k = K − 1, . . . ,1 and the initial conditions are xK|K

and σ2
K|K from the forward phase. Finally, using state-space

covariance ideas [10],

Wk,k+1 = Akσ2
k+1|K + xk|Kxk+1|K (21)

Wk = σ2
k|K + x2

k|K . (22)

The EM algorithm requires an initial condition. The initial

condition used in the calculations described in this paper is

µ = [N(T )−N(0)]/K, ρ = 0, σ2 = µ/4 and x0 = 0.

V. SIMULATIONS

The algorithm of the previous section has two components:

computing the moments and computing the ML estimator

of µ , ρ , and σ2. In simulation, it is possible to separately

evaluate the performance of both components.

The first simulation covers the filter that computes xk|k.

The simulated data is from Equations 5-6 with µ = 6, ρ =
0.8, σ2 = 1, K = 100, ∆ = 0.3 and x0 set to the corresponding

steady state value. The initial conditions for the filter are

the initial conditions for the overall algorithm described

following Eq. 22. In summary of the results, Figure 1 shows

the xk|k from Eqs. 14–17 for one trajectory demonstrating that

many qualitative features of xk are successfully preserved in

xk|k in spite of the exponential nonlinearity.

The second simulation covers the entire maximum likeli-

hood estimator for the parameters µ , ρ and σ2. We have done

Monte Carlo calculations (J = 20 trajectories, each K = 1000

samples long) of the bias and the variance of the estimates

for µ , ρ and σ2 when the true values are µ ∈ [0.2,2],
ρ ∈ [0.002,0.92], σ2 ∈ [0.01,0.5] and ∆ ∈ 1,2, which covers
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Fig. 1. An example of truth (x) and estimate (xk|k) for the filtering problem.

the values we have observed in the experimental data. The

EM algorithm is always started for the initial conditions

described following Eq. 22.

Overall, the results show only small biases and small

variances around the biased value. We summarize the results

for µ because large values of µ versus small values of

µ strongly influence whether the rate of arrivals is large

or small. Among the results concerning µ , we focus on

simulated data where the true values of all the parameters are

near the values seen in the experimental data, specifically,

µ ∈ [1,1.25,1.5,1.75,2.0], ρ = 0.1, σ2 = 0.1 and ∆ = 2.

The mean of the estimate of µ as a function of the true

parameter values by Monte Carlo is µ̄ = (1/J)∑J
j=1 µ̂( j)

where j indexes Monte Carlo trials. The bias is bµ =
µ̄ − µ true, and the standard deviation is the square root of

s2
µ = (1/(J −1))∑J

j=1(µ( j) − µ̄)2. As shown in Table I, the

TABLE I

SUMMARY OF SIMULATION RESULTS CONCERNING µ . bµ IS THE BIAS

AND sµ IS THE SQUARE ROOT OF THE ESTIMATION ERROR VARIANCE.

µ 1 1.25 1.5 1.75 2.0

bµ -0.0391 -0.0371 -0.0261 -0.0350 -0.0209

sµ 0.0220 0.0182 0.0157 0.0160 0.0173

bias is less than 4% and the standard deviation is less than

2% of the true values and the dependence on the true value

is weak.

VI. EXPERIMENTAL RESULTS

The studies were approved by the Indiana University

Institutional Review Board. All subjects provided written

informed consent. The experimental results for two subjects

are shown in Figure 2. The two curves have differences

at both large and small time scales. For instance, at the

time scale of 103 samples the deviations from 0 are entirely

different in pattern, even in direction. On a small time scale,

Figure 2(a) has more variation than Figure 2(b) shown here

as the appearance of a thicker curve for Figure 2(a) than

Figure 2(b).

The histogram of interarrival times is shown in Figure 3.

The data is only measured to within 1 second so the

histogram is discretized. In spite of the discretization, the

histogram does not appear to originate from an exponential

interarrival time pdf (since the curve is not a straight line),

motivating the doubly stochastic model of Eqs. 5–6.

The estimated dynamical system parameters µ , ρ , σ2

are shown in Table II for the 8th epoch between ethanol

rewards for two experiments on each of four subjects using
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Fig. 2. Experimental results on two subjects. The curve is the counting
process for button presses as a function of the time minus the average rate
multiplied by time so that the difference remains near zero. The average is
exactly the µ value defined following Eq. 22 which is used in initialization
of the estimator.
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Fig. 3. Log-histogram of the interarrival times (seconds) for experimental
results on two subjects.

an estimator with ∆ = 2. The differences between the two

experiments are the amount of ethanol provided at the

completion of the task. An estimate of the variance of x(·)
from Eq. 8 is σ̂2/(1− ρ̂2). For the values in Table II, this

estimate takes the values .0755, .0927; .161, .114; .124, .212;

1.013, .634 where the results are in the same order as the

rows in Table II. With the exception of Subject 515, larger

rewards lead to a larger value of µ̂ which is the constant part

of the rate function for button pushing. Larger rewards had

a less consistent effect on the time-varying properties of the

rate function since in half of the cases larger reward lead to

a larger value of σ̂2 while in the other half it did not and,

similarly, in half of the cases larger reward lead to a larger

value for the estimated variance of x(·) while in the other

half it did not. The µ̂ results are consistent with expectations

for these subjects, all of whom are non-treatment-seeking

alcoholics.

VII. DISCUSSION AND CONCLUSIONS

In light of the estimator performance described in Sec-

tion V (e.g., Table I), the differences in dynamical system

parameters µ , ρ , and σ2 described in Section VI (Ta-

ble II) may be sufficient to allow the dynamical system

TABLE II

PARAMETER ESTIMATES FROM EXPERIMENTAL DATA. “HIGH” VERSUS

“LOW” IS THE AMOUNT OF ETHANOL PROVIDED AT THE COMPLETION

OF THE TASK.

Subject Reward ρ̂ σ̂2 µ̂
527 High 0.289486 0.0691861 1.60211

527 Low 0.308521 0.0838568 1.16288

548 High 0.289161 0.147671 1.14713

548 Low 0.00054163 0.0113837 0.992117

502 High 0.0974935 0.101417 1.43138

502 Low 0.0856287 0.210045 1.25287

515 High 0.852337 0.277011 1.06055

515 Low 0.860755 0.164302 1.28342

parameter estimates to act as features in pattern recognition

and clustering algorithms. In particular, ρ̂ ranges over an

order of magnitude which implies large differences in the

characteristic time over which the xk process, and therefore

the λk rate process, is strongly correlated.

An attractive characteristic of this approach is that it

provides information on the temporal dynamics of the rate

function, e.g., ρ̂ . In different types of experiments, alcoholics

are known to have different temporal character to their

responses and we hope that this will be apparent in the

parameter estimates.

An attractive feature of an ML estimator is that standard

theory provides an estimate of the covariance of the differ-

ence between the parameter estimates and the true parameter

values [7]. This estimate requires computation of the Hessian

of the log likelihood at the parameter values that maximize

the log likelihood. While this computation is not currently

implemented in the system described in this paper, it will be

a key component of statistical tests for whether differences

in parameter values are significant. In the future we will also

investigate alternative ideas to compute the moments defined

in Section IV, including particle filter ideas.

The values of µ , ρ , and σ2 summarize the data: µ
describes the average rate of button pushing, ρ describes how

rapidly the instantaneous rate of button pushing changes with

respect to time, and σ2 describes the size of the changes.

Potentially these features, or similar features from a more

complex model, will be useful as the input to classifiers

for distinguishing subjects who use alcohol in different

ways and, through such classification, aid the selection of

more appropriate therapy. Similarly, comparing these features

when a subject is taking versus not taking a drug may be

useful in the development of the drug and/or in the selection

of an appropriate drug for therapy.
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