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Abstract— A theoretical investigation into the behaviour of
the Non-Markov Parameter is performed from a signal pro-
cessing perspective in contrast to previous methodologies based
on stochastic processes theory. The results indicate that the
NMP can be regarded as an informational metric which is
indicative of the degree of low frequency synchronisation in
a complex system. These results have deep implications for
physiological analysis of biological systems where the presence
of sychronisation is often a marker of pathological functioning.
The NMP measure is then applied to in vivo micro-electrode
recordings from the subthalamic nucleus.

I. INTRODUCTION

Treatment of Parkinson’s disease beyond pharmacological
therapy is moving towards a neurosurgical treatment known
as Deep Brain Stimulation (DBS). In DBS the location of
the candidate neural structures for stimulation are verified by
Micro Electrode Recordings (MER) in addition to standard
imaging techniques. The presence of the MER probes in deep
brain structures of the Basal Ganglia (BG) in conjunction
with an awake cognitive patient (as is required for the
DBS procedure) provides a unique opportunity to perform
linguistic tests to directly ‘see’ how certain neurons deep in
the brain behave during cognitive processing.

Signal processing metrics are frequently employed in
investigative signal analysis in conjunction with statistical
tests to detect quantitative changes in the behaviour of
neurons when the brain performs different cognitive pro-
cesses. The task of understanding qualitatively what these
changes suggest about the underlying biology of the neuronal
behaviour is very important but more difficult. The key to the
success of this hinges largely on having a good conceptual
understanding of the metrics applied to the neural signals
in order to link the quantified changes observed to the
physiological changes which are veiled.

In recent research [1] the unfiltered neural signals from
the subthalamic nucleus (STN) were analysed using the Non
Markov Parameter (NMP) as a signal processing metric. The
unfiltered data was analysed on the hypothesis that the ‘neu-
ral noise’ often discarded with spike sorting algorithms was
removing important neural interactions vital for decoding
the behaviour of STN neural clusters. The application of
the unorthodox NMP metric was motivated largely by the
failure of previous studies using classical signal processing
metrics to show that the STN activity was modulated with
the changes in linguistic stimuli [2]. The success of the NMP
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metric to detect these changes [1] where others had not is of
interest.

The results from applying the NMP metric to the unfiltered
STN MER signals indicated that the STN changes its neural
firing patterns when presented with different stimuli but gave
no indication about the nature of this different behaviour.
The central problem was that the NMP was defined from
the abstract fields of non equilibrium statistical mechanics
and stochastic processes where it is very difficult to draw
out a conceptual understanding of what the NMP changes
physically represented. In effect, using the NMP signifi-
cant changes were observed, but understanding what these
changes were was unknown.

To provide more insight into the NMP existing theory is
reviewed and then extended to show that the NMP can be
related to standard spectral functions in signal processing
theory. The link between the NMP and detection of syn-
chronicity is then explored by analysing how the NMP varies
for a system which acts as a simplified model with variable
synchronicity. The conceptual understanding of the NMP is
then applied to the results of neuro-linguistic experiments
[1] to provide insight into the physiological changes in
the behaviour of STN neurons when processing different
linguistic tasks.

II. NMP METHODOLOGY

Consider a swarm of interacting objects with defined
observables which describe the phase space of the system.
The objects could range in complexity from the positions
and momenta of the balls in a game of snooker after a
break to the voltage and conductance of the ionic gating
variables of the 1011 neurons in the human brain when an
action potential fires. Often the evolution of all the system
variables is not of concern. For example one may only care
about the trajectory of the black ball in a game of snooker or
the voltage changes of a cluster of neurons near an electrical
probe. The evolution of these variables of interest (Gµ) are
described by an integro-differential equation which is forced
by a noise term Fµ(t):

Ġµ(t) =
∑
ν

ΩµνGν(t)−
∫ t

0

∑
ν

Mµν(t
′)Gν(t−t′)dt′+Fµ(t),

(1)
where Ων,µ is the coupling matrix between the different
observables of interest and Mµν(t

′) is the abstract memory
kernel which also allows coupling between the different
observables of interest.
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The contribution of the neglected variables is buried in the
memory kernel (convolution) and stochastic forcing terms.
The convolution term causes the evolution of the observables
to depend on their past history and is a general consequence
of describing a history independent process as a history
dependent process with reduced degrees of freedom [3].
The stochastic force can conceptually be understood as the
contribution of the neglected variables which are not being
observed, but will still be effecting the dynamics, perturbing
the observables in a stochastic fashion.

For simplicity the evolution of a single observable is
considered and the commutative property of the convolution
operator is invoked. The coupling matrix is reduced to the
scalar known as the first relaxation parameter λ. In addition
the memory kernel is multiplied by the second relaxation
parameter Λ:

Ġ(t) = λG(t)− Λ

∫ t

0

M(t− t′)G(t′)dt′ + F(t). (2)

The relaxation parameters are normalisation factors defined
in terms of the derivative of the normalized autocorrelation
function of the observable c(t) and the memory function at
time zero which satisfy:

λ =
dc(t)

dt

∣∣∣
t→0+

, Λ =
1

M(t)

∣∣∣
t=0

. (3)

The problem with the ZM chain (2) is that the presence
of the noise term makes the system a stochastic integro-
differential equation which are mathematically difficult to
solve and analyse. The equation can be reduced to a standard
integro-differential equation by removing the noise term
by projecting the observable at time zero, G(0), onto the
evolution equation and averaging:

dc(t)

dt
= λc(t)− Λ

∫ t

0

M(t− t′)c(t′)dt′, (4)

where:

⟨F(t)G(0)⟩ = 0 , ⟨G(t)G(0)⟩ = c(t). (5)

Another problem with the ZM chain formalism is the
difficulty in conceptually understanding the memory kernel.
The second fluctuation dissipation theorem shows (in the one
dimensional case) that the memory kernel can be written in
terms of the autocorrelation functions of the stochastic force
and the system observable [4]:

M(t) =
⟨f(t)f(0)⟩
⟨G(0)G(0)⟩

(6)

The consequences of this result are not immediately clear
in the sense that it is difficult to translate knowledge about the
autocorrelation structure of the neglected variables perturbing
the relevant observables to knowledge about the system
and observables of interest. This theorem is nonetheless
of fundamental importance because it identifies that both
the memory kernel and stochastic force, which arise from
applying the ZM chain framework to the full (all observables
considered) dynamical system, are intrinsically linked and
not independent variables.

Numerical solutions of equation 4 (or its multi-
dimensional analogues) have been applied to data sets as
diverse as wind speeds to stock prices [5] in order to estimate
the ‘memory length’ of these complex systems. Care must be
exercised in interpreting the memory kernel as it has been
shown [6] that it can generate periodic structure with no
connection to the physical system in addition to the solution
depending on the discretisation process. It has also been
shown [6] that the ZM chains form a true subclass of Auto
Regressive Moving Average models, which helps indicate
how the ZM chains analyse a system in a linear signal
processing framework.

A different approach to applying ZM chains to interpret
data sets from complex systems has been undertaken [7]. In
this approach a metric, the NMP, is established to indicate
when a complex system is operating in different states. This
metric 1 has successfully been applied in biological systems
to show the difference in cardiac R-R interval behaviour
between a healthy heart and one undergoing myocardial
infarction [8]. The NMP is defined as:

NMP = lim
ω→0

F [c(t)] (ω)

F [M(t)] (ω)
=

∫∞
−∞ c(t)dt∫∞
−∞ M(t)dt

. (7)

It can be seen that the NMP is a ratio of the ‘L0 norms’
of the autocorrelation function and memory kernel. The
NMP will be maximised for a memory kernel described
by the Dirac delta distribution at zero (conditional on the
autocorrelation function not also being described by a Dirac
delta distribution). The structure of this memory kernel (i.e.
no memory except at zero time) indicates that the NMP is
maximal for regular Markov processes. More generally it
can be shown [5] that the NMP is the ratio of the correlation
time of the system to the correlation time of the random
forces acting on the system and an “informational measure
of chaosity and randomness” [8]. In the next section the NMP
described by equation (7) will be expressed in simpler signal
processing terms using equation 4.

III. NMP RESULTS

In this section frequency domain analysis is applied to
equations (4) and (7) to express the NMP in terms of
well known spectral functions. From the Wiener-Khintchine
theorem it is known that the Fourier Transform (FT) of the
normalised autocorrelation function is simply the normalised
Power Spectral Density (PSD). It is less clear what the FT of
the memory function represents. Understanding this is key
to understanding the NMP in a signal processing framework.

In order to determine a functional form for the memory
function in frequency space we take the FT of both sides
of the 1-D ZM chain (equation 4). In taking the FT of
these signals there is an immediate problem: the time series
observed from any signal probe must be causal (i.e. only
exist from the time the recordings start at t = 0 to some future
finishing time t = T) but the FT is defined over all positive

1This article looked at the full NMP spectrum, not just the zero frequency
value
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and negative time. In order to remedy this the Fourier kernels
are multiplied by the Heaviside function centered at zero:

F
[
dc

dt
θ(t)

]
= λF [c(t)θ(t)]−ΛF

[∫ t

0

M(t− τ)c(τ)θ(t)dτ

]
.

(8)
These Fourier transforms will be considered individually:

F
[
dc(t)

dt
θ(t)

]
(ω) = iωF [c(t)θ(t)]− 1, (9)

Where integration by parts has been used and it is recognised
that the definite integral component vanishes, and then the
sifting property of the Dirac delta distribution has been
applied.

The convolution term can be determined by writing the
double integral as the product of two FT with an additional
Heaviside function in the kernel, using the variable substitu-
tion p = t− τ , and then applying the convolution theorem:

F
[
Λ

∫ t

0

M(t− τ)c(τ)dτθ(t)

]
(ω)

= Λ · F [M(p)] ∗ F [θ(p)] · F [c(τ)] ∗ F [θ(τ)] (10)

Applying these FTs and Re-arranging the ZM chain (4) for
the memory kernel term yields:

F [M(p)] (ω) ∗ F [θ(p)] (ω)

=
1

Λ
(λ− iω) +

1

Λ
· 1

F [c(τ)] (ω) ∗ F [θ(τ)] (ω)
.(11)

This equation can be simplified by using the following
identity [9]:

F [f(t)] (ω) ∗ F [θ(t)] (ω) =
1

2
(F (ω)− iH [F (ω)] (ω)) ,

(12)

where H [F (ω)] (ω) is the Hilbert transform of the Fourier
transform of the signal. Applying this identity to (11) and
taking the real component of the memory function yields:

M(ω) =
2λ

Λ
+

4

Λ

(
P (ω)

|V (ω)|2

)
. (13)

By substituting equation (13) into equation (7) the NMP
can be expressed as;

NMP = lim
ω→0

1

2

(
ΛP (ω)|V (ω)|2

λ|V (ω)|2 + 2P (ω)

)
. (14)

The expression |V (ω)|2 = P (ω)2 +H [P (ω)]
2 is known in

communications theory as the square of the Complex Enve-
lope (CE) [10], which as the name suggests, envelopes the
function. PSDs which are monotonically decreasing or flat
(i.e. white noise) will be perfectly tracked by the CE of the
PSD. Conversely for PSDs which oscillate with local maxima
and minima (i.e. exhibit synchoronisation frequencies) the
CE will not perfectly track the PSD in these regions.

Hence the NMP defined in [8] can be understood from
equations (13) and (14) as a measure of how much oscillatory
behaviour occurs at low frequency. For flat spectral behaviour
near zero the NMP will be approximately unity, for oscilla-
tory spectral behaviour near zero the NMP will be larger

than unity. In the next section the conceptual understanding
of the NMP is applied to the archetypal example of the
forced harmonic oscillator to explore how the NMP varies
with spectral parameters and to identify a possible link to
the detection of synchronicity.

IV. ANALYTICAL APPLICATION OF NMP RESULTS

In this section of the paper the NMP for a damped
harmonic oscillator driven by white noise is analysed. The
natural frequency for this one dimensional oscillator can
be considered as the frequency that the components of a
multi-dimensional complex system synchronise at, with the
damping factor indicating how sharply the components syn-
chronise about this frequency. A particularly salient example
for this paper is to consider this as a model for the aggregate
output electrical behaviour of a collection of neurons.

The autocorrelation structure of a damped harmonic oscil-
lator driven by white noise is given by [11]:

c(t) = e−a|t|cos(ω0t). (15)

Where a is the damping constant and ω0 is the natural
frequency. The Laplace transform of the autocorrelation
function is given by:

C(s) = L
[
e−a|t|cos(ω0t)

]
(s) =

s+ a

(s+ a)2 + ω2
0

. (16)

The memory kernel as a function of time can be determined
by taking the Laplace transform of both sides of equation
(4), applying the convolution theorem, recognising that the
normalised auto correlation function is unity at time zero,
re-arranging for the memory kernel and taking the inverse
Laplace transform of the result:

M(t) = L−1

[
1

Λ

(
(λ− s) +

1

C(s)

)]
, t ≥ 0. (17)

Using equations (16) and (17) the memory kernel of the
white noise driven harmonic oscillator can be expressed as:

M(t) =
ω2
0

Λ
e−a|t|. (18)

This immediately shows that the relaxation parameters λ and
Λ are given by the damping constant and natural frequency
squared respectively. The normalized PSD of this process is
given by the FT of the normalized autocorrelation function
(equation 15):

P (ω) =
a

a2 + (ω0 − ω)
2 +

a

a2 + (ω0 + ω)
2 . (19)

The memory kernel in frequency space is given by taking
the Fourier transform of equation (18):

M(ω) = F
[
e−a|t|

]
=

2a

a2 + ω2
. (20)

Using (7), (19) and (20) The NMP is given by:

NMP = lim
ω→0

P (ω)

M(ω)
=

a2

a2 + ω2
0

. (21)

Equation (21) shows that the NMP depends on both the
system natural frequency and damping constant. The natural
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frequency is the location of the local maxima in the PSD
and thus the closer this is to zero the greater the difference
between the PSD and its CE, giving a larger NMP, leading
to unity in the limit of ω0 = 0. The heavy damping regime
can be explained by the damping causing the PSD to smear
out, allowing more accurate tracking by the CE, leading
to an NMP of approximately unity. In the neural analogy
this would correspond to the case of all the neurons in
the cluster firing at a range of different frequencies from
one another. The zero damping case is trivially explained
by the PSD being zero everywhere except at ω0. In the
analogy this would correspond to all of the neurons perfectly
synchronising by firing at the same specific frequency ω0. It
is important to note that this zero damping (perfect resonator)
case is in agreement with the result that strongly non-
Markov processes will have a NMP << 1 [8]. The following
section outlines the experimental methodology of the neuro-
linguistic tests which were analysed using a variant of the
NMP as a signal processing metric.

V. EXPERIMENTAL METHODOLOGY

The complete description of the experimental set up and
methodology used in this research is provided in [1]. In
essence the experiments performed were based on seeing
whether the electrical behaviour of the STN, as determined
by MER probes, was correlated with the patients behaviour
when presented with pairs of words which were either
semantically similar (n=14) or different (n=14). The words
forming the pairs were drawn from either household items
or animals. Thus ‘cat’ and ’dog’ would be considered
semantically similar word pairs whereas ’cat’ and ’chair’
would be considered semantically different word pairs. The
auditory recordings of the word pairs were presented to
the patient, who responded manually using his left index
finger to indicate which category the word pair belonged to.
The electrical behaviour of the STN was analysed under the
additional permutations of the two brain hemispheres (the left
and right sides were considered in separate trials) and three
time epochs. The first epoch was before the word pair was
given for baseline activity, the second epoch was immediately
after the word pair was given during the cognitive processing
of the stimuli and the third epoch was during the motor
response to the stimuli. The MER signals were taken from
the STN of 7 patients (all male, non senile and right handed)
comprising 666 individual trials sampled at 24 kHz which
were analysed in an unfiltered form off line.

Experiments of this form allow for an examination of
whether the BG may be involved in semantic processing
and decision making in addition to its well known motor
modulation functions [12]. One of the unique features of
the current research is the use of highly localised MER
recordings in contrast to the indirect methods of subcortical
activity such as functional Magnetic Resonance Imaging
[13]. It is important to note that [2] used MER of the BG,
showing that the STN activity was not modulated with the
changes in linguistic processes in contrast to recent results

(a) Left STN. No significant differ-
ence

(b) Right STN. significant difference

Fig. 1. Mean Synch values during and after (Epoch 2 and 3) same and
different word pair associations from the left and right STN MER recordings.
Notice that there is only statistically significant differences between the
semantic condition for the right brain.

which suggested a statistically significant change when using
the NMP signals processing metric [1].

In addition to using highly localised MER probes the ap-
plication of exotic complexity based metrics to the unfiltered
neural signals is unique. Most waveform analysis is based on
a subjective threshold of the recorded signal followed by ad
hoc analysis of resultant inter-arrival times [14], [15]. For
example, mean firing rates and a burst index (calculated by
dividing the burst firing rate by the mean firing rate) were
considered in [16]. The signal analysis in this experiment
simply required the unfiltered MER signals which were fed
into the NMP signal processing metric.

The NMP of equation (7) could not be employed directly
in the statistical analysis because it violated the critical
requirements that the data be normally distributed. In order to
remedy this an optimal Box-Cox (power law) transformation
was applied to the data of the form:

Synch = −2

(
1√

NMP
− 1

)
. (22)

The synch metric was applied to the MER signals and
the resulting data was analysed using a Linear Mixed Model
(LMM) to determine if there were any statistically significant
interaction effects between the three fixed factors of brain
side (left or right), semantic condition (same or different) and
time epoch (before, listening and responding to stimulus).
The LMM was set up such that brain side, semantic condition
and time epoch were modeled as fixed effects whereas the
patients were modeled as random effects and significance
of interaction was set at the (p < 0.05) level. Statistically
significant interaction effects were observed between all two
and three way interactions. Interaction effects of interest
were then explored with planned contrasts. The next sec-
tion focuses on interpreting the results of the analysis of
interaction between the brain sides and the listening and
responding epochs using the conceptual understanding of the
synch metric.

VI. EXPERIMENTAL RESULTS

The interaction of the neural behaviour with the brain side
and presentation of linguistic stimuli during the different
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epochs were analysed with the synch parameter using the
experimental methodology described in the previous section.
In particular, figure 1 shows post-hoc contrasts comparing
the mean synch values with standard error as uncertainties
between the listening and responding epochs on both brain
hemispheres. The change in mean synch value was shown
not to be statistically significant between the listening and
responding epochs for the left brain, but statistically sig-
nificant (p < 0.01) for the right brain by unpaired t-tests.
Using the developed conceptual understanding of the NMP
(and hence synch) it can be seen from figure 1 that the
spectral firing pattern in the STN on the right side of the
brain appears to lose a low frequency synchronisation and
display either a monotonically decreasing or flat PSD at
low frequencies when changing processing from identifying
semantically similar to different word pairs. To obtain insight
into this behaviour it is important to note that the in the case
of a maximal NMP (minimal synch) value the memory kernel
will typically be a Dirac delta distribution. By the second
fluctuation-dissipation theorem the stochastic noise term in
equation (2) will be a white noise process. Thus behaviour
of the observable (in these experiments the aggregate output
voltage) reduce to the well studied Ornstein-Uhlenbeck (OU)
process. The probability evolution for an OU process is
known to be a time dependent Gaussian distribution [17]. The
fact that information entropy is a maximum for a Gaussian
white noise process [18] may show that the low synch value
is detecting the cluster of neurons firing in a manner to
maximise the information entropy. This would suggest that
the brain requires more information to identify semantically
different word pairs compared to semantically similar word
pairs.

The problem with this hypothesis is that there is little
evidence that suggests that more information is required to
distinguish different words than to identify similar words.
From a mathematical perspective a fundamental problem
is that this logic cannot be extended to determine the
probability evolution for a general memory function which
will be forced by a colour correlated process. A second
mathematical problem is that the statement of maximal
information entropy is particularly vague, not withstanding
that information entropy places upper limits and not values
on information transmission [18]. Thus these results need
to be placed on firmer mathematical grounds, extending the
probability evolution of the observable to the general case
and the link to information entropy should be rigorously
explored.

The discrepancy between these results and those discussed
in [2] is most likely a consequence of using the synch
metric. The MER signals in [2] were analysed in a linear
signal processing framework by comparing whether the mean
peak voltage and latency time observed between semantically
different word pair experiments was significant (p ≤ 0.05
level). These results suggest that if STN is involved in lexical
processing its influence is extremely subtle, as evidenced
by the need for such highly exotic parameters as the synch
metric to see its effects.

VII. CONCLUSION

The NMP parameter has been analysed using frequency
domain techniques to show that it can approximately be
regarded as a measure of how much a complex envelope
varies from its PSD at low frequencies. This result indi-
cates that the NMP may be a suitable metric for detecting
low frequency synchronisation in complex systems. This
conceptual understanding of the NMP has been applied to
deep brain structures of humans during neurolinguistic tests
to suggest that the neurons in the right side STN of the
brain tends to synchronise at low frequencies when presented
with semantically similar word pairs. The detection of STN
unfiltered signal changes with the NMP metric has broad
consequences in neurophysiology and clinical neuroscience
where significant effort is applied through multiple probe
configurations and post processing techniques to remove the
‘neural noise’ which may in fact have valuable information
content.

REFERENCES

[1] P. Meehan, P. Bellette, A. Bradley, J. Castner, H. Chenery, D. Copland,
J. Varghese, T. Coyne, and P. Silburn, “Investigation of the Non-
Markovity Spectrum as a Cognitive Processing Measure of Deep Brain
Microelectrode Recordings,” International Conference on Bio-inspired
Systems and Signal Processing, Rome, Italy,, pp. 144–151, 2011.

[2] M. Wahl, F. Marzinzik, A. Friederici, A. Hahne, A. K. G. Schneider,
D. Saddy, G. Curio, and F. Klostermann, “The human thalamus
processes syntactic and semantic language violations,” Neuron, vol.
59, pp. 695–707, 2008.

[3] R. Zwanzig, Nonequilibrium Statistical Mechanics. Oxford University
Press, 2001.

[4] G. Mazenko, Nonequilibrium Statistical Mechanics. WILEY-VCH
Verlag GmbH & Co KGaA, 2006.

[5] D. Schmitt and M. Schultz, “Analyzing memory effects of complex
systems from time series,” Phys. Rev. E, vol. 73(5), 2006.

[6] M. Niemann, T. Laubrich, E. Olbrich, and H. Kantz, “Usage of the
Mori-Zwanzig method in time series analysis,” Phys. Rev. E, vol. 77(1),
2008.

[7] R. Yulmetyev, P. Hanggi, and F. Gafarov, “Stochastic dynamics of time
correlation in complex systems with discrete time,” Phys. Rev. E, vol.
62, pp. 6178–6194, 2000.

[8] R. M. Yulmetyev, D. Yulmetyeva, and F. F. Gafarov, “How chaosity
and randomness control human health,” Physica A, vol. 354, pp. 404–
414, 2005.

[9] R. N. Bracewell, The Fourier transform and its applications. Mcgraw-
Hill, 2000.

[10] S. Haykin, Communication Systems. John Wiley & Sons, 2001.
[11] W. Coffey, Y. P. Kalmykov, and J. Waldron, The Langevin Equation

With Applications in Physics, Chemistry and Electrical Engineering.
World Scientific, 1996.

[12] F. A. Middleton and P. Strick, “Basal ganglia output and cognition:
Evidence from anatomical, behavioral, and clinical studies,” Brain
Cogn, vol. 42, pp. 183–200, 2000.

[13] J. Rissman, J. Eliassen, and S. E. Blumstein, “An event-related FMRI
investigation of implicit semantic priming,” J. Cogn. Neurosci, vol. 15,
pp. 1160–1175, 2003.

[14] Z. Israel and B. K. J., Microelectrode Recordings in Movement
Disorder Surgery. Thieme, 2004.

[15] E. Zelniker, A. Bradley, J. Castner, H. Chenery, D. Copland, and
P. Silburn, “Estimation of neuronal firing rates with the three-state
biological point process model.” J Neurosci Methods, vol. 174, pp.
281–291, 2008.

[16] W. D. Hutchison, R. J. Allan, H. Opitz, R. L. amd J.O. Dostrovsky,
A. Lang, and A. Lozano, “Neurophysiological identification of the
subthalamic nucleus in surgery for Parkinsons disease.” Ann. Neurol.,
vol. 44, pp. 622–628, 1998.

[17] H. Risken, The Fokker-Planck Equation. Springer, 1996.
[18] F. Rieke, D. Warland, R. van Steveninck, and W. Bialek, Spikes:

Exploring the neural code. MIT press, 1997.

2711


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

