
  

  

Abstract—Electrocardiographic (ECG) analysis plays an 
important role in diagnosis of heart diseases. High quality ECG 
pushes forward new drug development and improves clinical 
diagnosis. This paper introduces a novel method to correct baseline 
wander (BW) components of ECG signals based on Mean-Median 
(MEM) filter and discrete wavelet transform (DWT). We obtain 
the BW estimation via MEM, and decompose the estimation into 
different scales by DWT. Then, an iterative sifting process based 
on t-test is adopted to select the scales to reconstruct the refined 
BW components. The proposed method is applied to MIT-BIH 
Arrhythmia Database. The experimental results verify that the 
proposed method can effectively remove BW components and 
preserve useful waveform information. 

I. INTRODUCTION 
ASELINE wander (BW) is a low-frequency artifact that 
occurs in ECG signals, and is usually caused by respiration 

of patients or the motion of instruments. Removing this type of 
artifact serves as a primary step in ECG signal analysis, for 
subsequent processing or visual interpretation. A myriad of 
different methods have been utilized to normalize BW in ECG 
signals.  
 Some previous developments in this area include approaches 
based on linear filters, nonlinear filters, Polynomial 
interpolation, and wavelet filters [3]. As for linear filters [5], 
finite impulse response (FIR) and infinite impulse response (IIR) 
filters are the usual techniques to correct BW. However, fixed 
cut-off frequencies of these linear filters may lose useful 
information of waveform or cannot correct BW completely. In 
addition, adaptive filters are presented in [6,7], but these filters 
need a suitable reference signal difficult to be estimated and 
identified. Polynomial interpolation depends on an accurate 
determination on knots, and may be unreliable when it comes to 
separated knots [8]. As a nonlinear filtering technique, 
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Mathematical morphology can obtain local shape features of 
signals based on structuring element sequences [9]. However, its 
application may result in ‘step-like’ waveform distortion. This 
paper introduces Mean-Medain (MEM) filter as a nonlinear 
filter that can not only effectively preserve the outline of BW but 
also avoid waveform distortion caused by median filter and 
morphology filter [11]. Then we combine discrete wavelet 
transform (DWT), a time-frequency analysis tool well suited for 
nonstaionary signals, with a selection process through t-test to 
obtain an enhanced quality ECG.  
 This paper is organized as follows: Section II introduces the 
theories about MEM [2] and DWT [1].The proposed algorithm 
of BW correction of ECG signal is described in Section III. In 
Section IV, we test the proposed algorithm on MIT-BIH 
Arrhythmia database [4], and experimental results used to 
validate the proposed algorithm are presented. Finally, we draw 
conclusions in Section V. 

II. METHODOLOGY 

A. Mean-Median Filter 
The MEM output of a sample vector X can be seen as a 

convex combination of the sample median x and sample 

mean x  of X respectively, and is described as follows:  
 ( )(1 )                       1y x xα α= − +  

Where α ∈ [0, 1] is the known fraction of ‘contamination’. In 
this paper, we define operator _Mean Median to get the 
M-estimation of X  which is the numerical solution of the 
following equation: 
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Usually the proper range of k is [1.14, 1.945] [2] based on 

experiments. To obtain the estimation nθ  of BW, a window of 
length, W, is slid along the samples of ECG signal. The value of 
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W is usually assigned between one third and two thirds of the 
sample rate. It can be proved in [2] that estimating deviations 
follow an asymptotic normal distribution: 
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B. Discrete Wavelet Transform 
In general, the wavelet transform is a power time-frequency 

analysis tool. Usually, discrete wavelet function can be obtained 
by discretizing the scale parameter and the space parameter [1], 
and is described as follows: 
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Thus the coefficients of discrete wavelet functions can be 
obtained: 
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The reconstruction formula is as follows: 
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Where C  is a constant dependent of the wavelet.  
For the uncertain information of BW in wavelet domain, it is 

difficult to confirm wavelet coefficients of which scales to 
reconstruct BW especially in clinical application. Thus, in the 
following section, we first estimated the supremum of BW 
information by MEM, and then further elaborated BW 
information with the estimated deviations removed by DWT. 

III. THE PROPOSED ALGORITHM 

A. BW estimation 
To use MEM filter on a given ECG signal ( )X n  with length of 

L , we need to firstly extend the head and tail of ( )X n  with 
(0)X and ( 1)X L − , respectively. Then a window with length of 

W is slid sample to sample on the extended signal to obtain the 
low frequency components of the ECG signal. The MEM 
filtering processing is rewritten as follows: 
Extend the ECG signal 1X  to get 2X : 
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Then we obtain low frequency parts: 
( )2 2( ) _ [ ( ) : ( )]      10lowX i Mean Median X i X i W= +  

Where [0, 1]i L∈ − . 

B. Amending BW estimation 
Even though MEM estimates BW well and avoids serious 

waveform distortion, (4) indicates that the output of MEM still 
introduces some undesired information which follows an 
asymptotic normal distribution with a mean of zero. In the 
frequency domain, these deviations mainly distribute in P and T 
wave band, a higher than BW frequency band. Then we 
decompose lowX  into different scales by DWT and reconstruct 
BW from the lowest scale. A t-test will be performed to 
determine on which scale the reconstruction progress stops. The 
whole step is written as follows: 
i.     Decompose lowX by DWT and obtain M scales of wavelet 

coefficients. 
ii.     Reconstruct the current scale approximate wavelet 

coefficients and obtain MBW  
iii. Perform a t-test to determine whether the difference 

between lowX and MBW  has a zero mean. Two hypothesis 
are: 

( )0 ( ) 0                     :  11low MH mean X BW− =  

( )1 ( ) 0                      :  12low MH mean X BW− ≠  

iv. In step iii, if 0H  is accepted, the amending procedure 
terminates. Otherwise, repeat step ii and step iii  on the 

1thM − , 2thM − ,… ,wavelet coefficients until 0H  is 
accepted. 

We can obtain the accurate BW estimation QBW  when the 

amending process stops at the thQ scale wavelet coefficients. In 
fact, we have studied direct BW reconstruction from the highest 
scale wavelet coefficient. However, for the DWT 
decomposition characteristics experimental results reflect the 
proposed idea works better. 

IV. EXPERIMENTS 
In this part, all ECG signals come from MIT/BIH Arrhythmia 

Database [4]. The recordings were digitized at 360 samples per 
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second per channel with 11-bit resolution over a 10 mV range. 
Sample values ranged from 0 to 2047, with a value of 1024 
corresponding to 0 mV. Generally we truncate 3000 sample 
points of each ECG signal, and accordingly, the range of MEM 
window length W is from 120 to 200 points. In addition, for the 
sample frequency and the BW frequency band, the DWT 
decomposition level should be no less than 10.  

We compare the original ECG signal (record 103) with the 
corrected signal by the proposed method based on different 
wavelet functions.  BW components by MEM filter and the 
corrected BW components are also compared. These results are 
shown in the following figures.  
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Fig.1 Experimental results based on db6 wavelet 
<a>  Comparision of original signal (record 103) 

and corrected ECG signal 
<b> Comparision of BW by MEM and corrected BW 
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Fig.2 Experimental results based on sym6 wavelet 
<c> Comparision of original signal (record 103) 

and corrected ECG signal 
<d> Comparision of BW by MEM and corrected BW 
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Fig.3 Experimental results based on coif5 wavelet 
<e> Comparision of original signal (record 103) 

and corrected ECG signal 
<f> Comparision of BW by MEM and corrected BW 
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Fig.4 Experimental results based on bior4.4 wavelet 

<g> Comparision of original signal (record 103) 
and corrected ECG signal 

<h> Comparision of BW by MEM and corrected BW 
 

To further investigate the proposed method, a series of 
artificial BW (ABW) are generated by lowpassing a random 
signal. The random amplitude α is uniformly distributed in an 
interval of [0, c] [10]. The average enhancement of 
signal-to-noise ratio (SNR) of the MIT/BIH Arrhythmia 
Database under different c values is listed in Table.1. SNR value 
is defined as 

1020 log ( / )SNR S Nσ σ= where S
σ

and N
σ

denotes 
the standard deviation of signal and noise, respectively. In 
Table.1, we compare the performance of SNR enhancement of 
the proposed method based on different wavelets with that of 
method in [12]. The first and the second row of data 
corresponding to db6 denote the average and the maximal 
enhancement of SNR under different c values when using db6 
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wavelet, respectively. Data groups corresponding to other 
wavelets and method are understood as db6.  

TABLE.1 
Comparison of different wavelets on the whole MIT/BIH 
Arrhythmia Database under SNR criterion 
Amplitude of 
ABW 

 
c=100 

 
c=300 

 
c=500 

 
c=700 

 
c=900 

db6 
 

9.731 8.092 9.589 11.84 13.40 
20.56 16.62 16.68 17.21 18.37 

sym6 
 

9.737 8.106 9.609 11.86 13.44 
20.60 16.75 16.78 17.27 18.47 

     coif5 
             

9.722 8.068 9.555 11.79 13.37 
20.56 16.66 16.67 17.16 18.27 

bior4.4 
 

9.757 8.128 9.634 11.89 13.47 
20.62 16.74 16.77 17.27 18.51 

The method of 
Blanco-Velasco 

4.456 3.769 6.047 9.531 11.29 
17.23 16.25 17.77 20.78 22.17 

 
From Table.1 we can see that the proposed method based on 

different wavelet functions can remove the BW well. Under the 
ABW of different amplitude, the average enhancement of SNR 
values of the whole database is better than that of the method of 
Blanco-Velasco [12]. However, when dealing with sever ABW, 
the maximal enhancement of SNR is inferior to that of the 
method of Blanco-Velasco, which may be relevant to the innate 
BW of the ECG signal. 

V. CONCLUSION AND FUTURE WORK 
A new BW correction method based on MEM and DWT is 

proposed in this paper. The MEM filter removes the low 
frequency parts of the original ECG signal in a nonlinear way. 
The DWT decomposes the MEM filter output into different 
levels of wavelet coefficients based on which the t-test selects 
the levels to reconstruct the accurate BW parts. Experimental 
results show that the proposed method can remove baseline 
wander effectively while preserve the useful information of the 
waveform of ECG signals. 
 Even though the proposed method performs well, future work 
includes researching the detailed influence of different wavelet 
functions as well as corresponding decomposition level on the 
performance of the proposed method. On the other hand, we will 
also study some other transform ways such as the Hilbert-Huang 
transform to correct the innate defects of MEM for a better BW 
correction result. 
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