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Abstract— While a healthy human heart produce a rhythmic
pattern of sounds, some heart disorder induce deviations per-
ceived as abnormal sounds called murmurs. Despite many mur-
murs can be considered harmless, other constitute the first basis
of a heart disorder. In this sense, a correct diagnosis remains
essential; however, due to the subjectivity on using human ear
to make diagnosis, automatic detection systems appear as useful
tools for helping medical specialists on improving diagnosis
accuracy. Complexity analysis has become one important tool
for the study of physiological signals, because tracking sudden
alteration on the inherent complexity on biological processes
might be useful for detecting pathologies. The present paper
presents a complexity-based analysis methodology, which uses
regularity features for the detection of heart murmurs, includ-
ing Approximate Entropy, Sample Entropy, Gaussian Kernel
Approximate Entropy, and Fuzzy Entropy. The results show the
high discriminative power, up to 90%, of the Gaussian Kernel
Approximate Entropy and Fuzzy Entropy for the proposed
labour.

I. INTRODUCTION

Functioning of human heart produces perceptible sounds
that can be sensed by tools as stethoscopes on a process
called auscultation. Perceived sounds come in pairs, S1 and
S2, each one being generated by a different physiological
phenomena; thus S1, is produced by the closing of mitral
and tricuspid valve, while S2, is produced by the closing of
aortic and pulmonar valve. Time intervals between sounds
are also defined: systole for the one between S1 and S2, and
diastole for the one between S2 and S1. It is expected that in
a healthy heart both systole and diastole remain silent; the
contrary, some perceived turbulence called murmur, might
be an indicator of an abnormal condition. Despite some
murmurs are harmless, others may be related to a serious
cardiac disease for which an accurate diagnosis remains as
an essential step for medical treatment. However, due to
overlapping of murmurs with the cardiac beat, those can
not be easily separated by human ear [1]. In this respect,
automatic murmur detection system, which utilize signal
processing techniques, might be a valuable tool for specialist
for making more accurate diagnosis.

A characteristic of physiologic systems is their complex-
ity, which arises from the interaction of a vast number
of structural units and regulatory feedback loops enabling
the organism to adapt to the stresses of everyday life [2].
Furthermore, it has been hypothesized that dynamics of a
healthy physiological system produce an apparently irregular
and highly complex type of variability, whereas disease
or aging is often associated with more regularity and less
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complexity [3]. Thus, by quantifying the complexity of
physiologic signals in health and disease potentially impor-
tant applications have arose, with respect to evaluating both
dynamical models of biologic control systems and bedside
diagnostics [4]. As a way to measure complexity of a system,
nonlinear dynamic analysis (NDA) tools have been used. In
this respect, complexity features such as dimensions of the
reconstructed attractor of a system, the rate of divergence
of trajectories traced by reconstructed states, among others
have been typically utilized. However, NDA features require
the signal dynamics to be deterministic; an assumption that
is not entirely valid due to stochastic components produced
by effects such as noise. As a result, entropy-based features
which do not need to assume determinism or stochasticity for
its calculation, are important on pathology detection labours.
In this category, complexity estimators which quantify the
regularity of a time series, have provided successful results
on characterizing heart dynamics [5], [6].

The present work presents a methodology for the detection
of heart murmurs using complexity analysis. Regularity
features as Approximate Entropy (ApEn), Sample Entropy
(SampEn), Gaussian Kernel Approximate Entropy (GapEn)
and Fuzzy Entropy (FuzzyEn) are used for characterization
of phonocardiographic signals (PCG); a k-nn classifier, and
a Gaussian Kernel Support Vector Machine (SVM) are used
for classification; and ROC curves are used for results assess-
ment. Results superior to 90% demonstrate the discriminative
capability of FuzzyEn and GapEn for automatic murmur
detection labours.

This paper is organized as follows: Section II describes
the methodology used on this work. Section III presents the
experimental setup and results. Finally, Section IV presents
the conclusions of this work.

II. MATERIALS AND METHODS

The automatic murmur detection system proposed in this
work is shown on Fig 1, while the most important sections
are explained in the next subsections.

Fig. 1. Automatic murmur detection system
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A. Characterization

NDA makes use of a process, called embedding, which
maps a given time series s = {x1, x2, ...xn} into an m-
dimensional space called phase space. The reconstructed
state vectors of the system are obtained by using (1).

x(t) = [s(t), s(t− τ), s(t− 2τ), ..., s(t− (m− 1)τ)] (1)

where x(.) is called state; m is the embedding dimension,
related to the least number of needed coordinates to embed
space vectors into state space; and τ is the time lag, related
to the spread of the reconstructed states as they traces out
trajectories on the state space. In order to calculate m and
τ the false nearest neighbours algorithm, and the mutual
information of the time series are used respectively [7].

The collection of states as they evolve, originate a geo-
metric object called attractor where typically NDA features
are extracted.

1) Regularity features: Are quantifiers of the complexity
of a system, based on entropy estimation.

For a single random variable, entropy quantifies its uncer-
tainty, being measured by means of the Shannon entropy
H(X). For a discrete random variable X, whose set of
possible values is given by Θ = {x1, x2, .., xn}, and its
probability mass function is given by p(xi) = Pr{X = xi};
H(X) will be defined as:

H(X) = −
∑
xi∈Θ

p(xi) log p(xi)

Extending the latter concept to phase space reconstruc-
tions, an information production rate, called Kolmogorov-
Sinai entropy (HKS), can be found.

Let the m-dimensional phase space be divided on N
hypercubes of radius r and volume rm, and let n mea-
surements be done, spaced τ between them. Let also be
PC = p(k1, k2, ..., kN ), the joint probability of the system
of being on hypercube k1 at time t = τ , hypercube k2 at
time t = 2τ and hypercube at t = Nτ . HKS can then be
defined as in (2) [8]:

HKS = − lim
τ→0
r→0
n→∞

1

nτ

∑
k1,...,kN

PC logPC (2)

Because of the limits on which HKS is established, it is
desirable to find another way of quantifying the entropy of
a time series without heavy computational load, the need
of large amount of information, while being robust to the
presence of low amplitude noise [9].

In this sense, regularity features have been developed to
somehow estimate entropy of a system while making front
to the implicit problems of HKS . One of first regularity
features, ApEn, was proposed by Pincus [10]; examining
similar epochs onto a time series, and quantifying the average
negative logarithm of the conditional probability that two
sequences that are similar for m points remain similar (within
a tolerance r), at the next point [11].

ApEn is defined as in (3), where r is a tolerance measure,
and Cmi (r) as in (4).

ApEn = φm(r)− φm+1(r) (3)

φm(r) =
1

n−m+ 1

n−m+1∑
i=1

logCmi (r)

C(r) = lim
n→∞

1

n2

n∑
i,j=1

Θ(r − ‖x(i)− x(j)‖) (4)

Despite ApEn has been successfully used on biosignal
characterization, it suffers from a phenomena called self-
matching which makes it a biased estimator. This happens
because when comparing embedding vectors, looking for
similar epochs, self-comparisons are also made. To overcome
that bias, Richman [11] proposed SampEn, which is defined
as in (5).

SampEn = − log

(
Am(r)

Am+1(r)

)
(5)

with A as in (4) but without self-matching.
According to [12], SampEn and ApEn had problems on

validity and precision due to their formulation on the non
continuous Heaviside function. A first attempt to overcome
that problem was proposed by [12] with GapEn, which re-
places the Heaviside function by a Gaussian Kernel function.
GapEn is defined as in (3), but replacing (4) by (6).

Cmi (r) =

n−m+1∑
j=1,j 6=i

exp
(
− (‖x(i),x(j)‖)2

10r2

)
n−m

(6)

A second attempt was proposed by [13] with FuzzyEn,
which replaces Heaviside function by a Fuzzy membership
function. FuzzyEn is defined as in (7).

FuzzyEn = lnφm(ne, r)− lnφm+1(ne, r) (7)

φm(ne, r) =
1

N −m

N−m∑
i=1

 1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij


where Dm

ij is a fuzzy membership fuzzy as in (8), ne is
a parameter determining shape of the fuzzy membership
function [14], dmij is a distance function, and u0(i) removes
baseline of space state vectors.

Dm
ij = exp(−(dmij )

ne/r) (8)

dmij = max
k∈(0,m−1)

|x(i+ k)− u0(i)− (x(j + k)− u0(j))|

u0(i) = m−1
m−1∑
j=0

x(i+ j) (9)

B. Classification
In order to make decisions, a 9 neighbours k-nn classifier

and a Gaussian kernel SVM were used. The number of neigh-
bours on the k-nn classifier were chosen as they produced
the highest classification rates among tested neighbours, from
1-11. SVM Gaussian Kernel classifier was chosen for its
generalization capability, while its parameters were tuned
in a cross-validation scheme for obtaining highest accuracy
rates.

2729



III. EXPERIMENTAL SETUP

A. Subjects

The database used in this study is made up of 148 de-
identified adult subjects. An electronic stethoscope was used
to acquire the heart sounds simultaneously with a standard 3-
lead ECG. Signals were digitized at 44.1 kHz with 16 bits per
sample. A diagnosis was carried out for recordings of each
patient and the severity of the valve lesion was evaluated
by cardiologists according to clinical routine. A set of 50
patients were labeled as normal, while 98 were labeled as
exhibiting cardiac murmurs, caused by valve disorders (aortic
stenosis, mitral regurgitation, etc.). Furthermore, for training
and validation of the algorithms, PCG signals labeled as
normal and those labeled as murmur were separated, then,
360 individual beats were extracted, 180 for each class.
The individual beats were picked out as the best from each
cardiac sound signal, after a visual and audible inspection by
a cardiologists; this was done to select beats without artifacts
and other types of noise that can impair the performance of
the algorithms [1].

B. Experiments

Individual beats were used as input to the presented
methodology, where every recording was firstly zero-one
normalized on amplitude, such that the dynamic range of
signals remained constant. In order to use regularity features,
the tolerance parameter r should be calculated, to not to
depend on the absolute amplitude of the signal [11]. That
parameter is typically given by r = rcstd(.), where std(.) is
the standard deviation of the signal and rc is a value varying
between 0 and 1. Experimentally the highest accuracy rate,
using all regularity features and SVM classifier, was achieved
by utilizing rc = 0.15 as shown in Fig 2, therefore fixing it
as parameter.
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Fig. 2. Accuracy for different rc values. Highest achieved accuracy is
marked with a circle.

To evaluate performance, a 11 fold cross-validation was
used. For assessment ROC curves were also utilized.

C. Results

A series of tests were performed with both k-nn and
SVM classifiers, and different feature sets: features working

individually, combination of GapEn and FuzzyEn (the two
individual features which produced the best performance),
and all regularity features working together. The obtained
results are shown on table I.

Classification accuracy, up to 90% with both k-nn and
SVM classifier, demonstrate the discriminative capability
of FuzzyEn, and GapEn working separately. Combination
of both did not significantly improved accuracy. On the
other hand ApEn produced the worst classification results,
being even outperformed by SampEn despite the later was
largely surpassed in performance by GapEn and FuzzyEn.
Combination of all features, increased accuracy to nearly
94% using the SVM classifier.

Features k-nn SVM
FuzzyEn 90,91± 0,90 91,51±1,29
GapEn 89,29± 2,52 90,62±1,59
SampEn 79,55± 1,92 75,21±4,63
ApEn 63,96± 3,30 71,98±3,05
GapEn+Fuzzy 91,06± 0,91 91,23±1,20
All 91,23± 0,11 93,66±1,58

TABLE I
ACCURACY OBTAINED BY USING K-NN AND SVM CLASSIFIERS

A boxplot of individual features distributed per class using
the SVM classifier is shown on Fig. 3. For assessment,
ROC curves are shown on Fig. 4. Moreover, area under
ROC curves (AUC) are also computed because their sig-
nificance on performance evaluation: the AUC of a classifier
is equivalent to the probability that a classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative instance [15]; thus, the higher the AUC, the
better the classifier.
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Fig. 3. Boxplot of individual features distributed per class, by using SVM
classifier

As shown on Fig. 3, the complexity analysis hypothesis
seems to be fulfilled with all tested features: Complexity in
normal class (perceived as less regular signals) is higher than
in the pathological class, suggesting the possibility on using
complexity analysis for accurately detecting pathology by
measuring changes on the natural complexity of biosignals.

It is also noticeable the small between-class overlapping
between GapEn and FuzzyEn boxes, which might explain
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Fig. 4. ROC curves for individual features by using SVM classifier

the high accuracy rates obtained. On the other hand, besides
ApEn has a small overlap between boxes, presents a large
dispersion of values between whiskers which might explain
its low discriminative capability. The good performance
given by GapEn and FuzzyEn is revalidated as shown by
the ROC curves of Fig. 4 and the high AUC obtained, up
to 0.93 and 0.94 respectively. The other extrema is given by
the ApEn and SampEn curves and its 0.74 and 0.85 AUC
respectively; a much lower performance compared to the
given by GapEn and Fuzzy.

The obtained results were comparable with some in the
state of the art. In [5] for example, a dog model was used as
an attempt to investigate prognostic value of heart murmur
in man. In this study, regularity features were used for
characterization of dogs with murmurs having aorta stenosis
and innocent murmurs. Results showed that dogs with the
disorder presented higher values of SampEn compared to
dogs without aorta stenosis. In [6] evidence was found of
SampEn as a suitable tool for quantification of cardiovascular
murmurs on humans, however finding no evidence of either
nonlinear or chaotic behaviour in recorded signals. Results
also verified the lower regularity and hence higher complex-
ity of healthy heart recordings than on those with murmurs.

In [1], a review of linear and nonlinear methodologies for
heart murmur detection was presented. In the nonlinear stage,
three nonlinear dynamic features: Correlation dimension,
Largest lyapunov Exponent and Hurst Exponent were used
for characterization, in conjunction with a 9 neighbours k-
nn for classification. Results superior to 97% of classification
accuracy and 0.99 AUC, reflect the capability of the NDA-
based schema on the detection of heart murmurs. Despite
results in the latter work were superior to those found in
the present paper, it should be pointed out that the discrim-
inative power of sole GapEn or FuzzyEn was remarkable,
suggesting that a methodology including other NDA features
in conjunction with regularity features might be useful for
increasing accuracy rates.

IV. CONCLUSIONS

The results verify the complexity analysis hypothesis
on all tested features: normal signals are more complex

than pathological ones, and hence less regular. Also, the
results evidence the good performance given by GapEn and
FuzzyEn while suggesting its utility on automatic murmur
detection systems for clinical applications. Moreover, the
possibility of varying tolerance parameter allows system to
deal with noise induced into recordings, as respiratory noise.

Despite SVM classifier produced the highest accuracy
rates among all tests, k-nn accuracy was nearly as good in
most of them and at a lower computational cost.

As future work, combination of regularity features with
other NDA features is proposed in order to more accurately
characterize dynamical complexity of biosignals, and thus
seeking for better classification performance.
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