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Abstract— This paper introduces a new regression method,
called ε-tube regression (ε-TR), for motion artifact reduction
in physiological signals. It forms a tube arround the data
which leads to an approximation that models only the motion
artifact and not the target signal. Moreover, ε-TR prescribes
the shape of the approximation using the available information
about the motion artifact. The results show that ε-TR can
effectively remove the motion artifacts from the impedance
signal measured on the arms.

I. INTRODUCTION

Support Vector Machine (SVM) [1] is one of the most
recent and successful algorithms in machine learning. It has
been extensively used in many different applications. The
regression version of the SVM algorithm, Support Vector
Regression (SVR), is the focus of this paper. The basic idea
behind SVR is to build a regression model that minimizes
the empirical risk calculated using the Vapnik’s ε-intensity
linear loss function. This way, SVR algorithm forms a tube,
with size ε , around the function. The approximation error is
zero at any given point if the approximated value is inside
the tube at that point. Otherwise, the error is equal to the
distance between the approximation and the tube.

There are many medical applications whose aim is to
monitor some physiological signal. However, the target
signal is often distorted by motion artifact. In particular,
removing the motion artifact is a crucial task in the portable
monitoring of the physiological signals. Therefore, robust
and effective motion artifact reduction methods are required
to deal with the motion artifact reduction problem. Many
of the physiological signals are periodic signals with con-
stant amplitudes or amplitude that changes slowly. When
measured during motion, these signals are often combined
with motion artifacts whose amplitude is bigger than the
target signal. The idea of the ε-tube can be used to solve the
problem of the motion artifact since it can model the motion
artifact which appears as changes with large amplitudes,
and avoids modeling the target signal which will eventually
lie within the tube. The approximated motion artifact can
then be subtracted from the original signal to recover the
target signal. An example of a physiological signals that is
susceptible to motion artifact is impedance signal. Impedance
signal can be used to extract the respiratory rate [2] which
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is a valuable physiological signal. The proposed method in
this paper, ε-tube regression (ε-TR), is used to reduce the
motion artifact in the impedance signal that is measured on
the subject’s arms.

The non-linear version of the SVR uses the idea of trans-
forming the data into a feature space using kernel functions.
This way, one activation function (AF) is placed at every
data point, and the SVR algorithm selects the appropriate
ones (support vectors) to build the model and calculates the
weights of the selected AFs. As a result, any function can be
approximated using the SVR algorithm. This makes SVR a
universal estimation algorithm which can be used to estimate
any function in any application. The drawback is that the user
does not have enough control over the process of support
vector (SV) selection, and the existing knowledge about the
system cannot be infused into the model. For example, in
motion artifact reduction, the overall shape of the artifact
is often known (it can be measured using an accelerometer
sensor), and this shape can be used to prescribe the final
structure of the estimation. However, this information can not
be used in the SVR algorithm to prevent SVR from choosing
wrong SVs in modeling the motion artifact.

The aim of this paper is to provide a new estimation
method that uses the idea of the ε-tube but prevents the
problem of SV selection described above. The shape of the
approximation function is fixed prior to the learning phase
in this method, and only the parameters of the prescribed
shape are subject to learning.

A. Support Vector Regression

The goal of any linear estimation algorithm is to find
the best model parameters, w and b, such that the error
between the estimation f (x,w) = wT x + b and the target
values yi for the data points {xi,yi} is minimized regarding
an objective function. The risk function associated with SVR
encompasses two terms,

R =
1
2
‖w‖2 +C

n

∑
i=1
|yi− f (xi,w)|ε . (1)

The first term ensures the smoothness and the generalization
capability of the model while the second one minimizes the
error and the number of data points that lie outside the tube.
The parameter C controls the balance between the two, and
the Vapnik lose function |yi− f (xi,w)|ε is defined as

|yi− f (xi,w)|ε = max(0, |yi− f (xi,w)|− ε). (2)

Using the definition of the Vapnik’s loss function, one can
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Fig. 1. Approximating the motion artifact with two tangent sigmoid AFs

define the slack variables ζ and ζ ∗ as follows.

|yi− f (xi,w)|− ε = ζ for data ’above’ the tube, and
|yi− f (xi,w)|− ε = ζ

∗ for data ’below’ the tube
(3)

Therefor, minimization of the risk function R equals the
minimization of the risk

Rw,ζ ,ζ ∗ =
1
2
‖w‖2 +C(

n

∑
i=1

ζi +
n

∑
i=1

ζ
∗
i ) (4)

subject to the constraints

yi−wT xi−b≤ ε +ζi, i = 1..n (5)

wT xi +b− yi ≤ ε +ζ
∗
i , i = 1..n (6)

ζi ≥ 0, ζ
∗
i ≥ 0, i = 1..n (7)

Forming the dual Lagrangian of the above optimization prob-
lem will lead to a standard quadratic optimization problem
in terms of the dual Lagrangian multipliers and the input
data. However, the dual problem is not the subject of this
paper and is not discussed here. One can build a non-linear
SVR model by replacing the product xT

i x with the kernel
function K(xi,x). This is called the kernel trick. Although
the parameter C provides a tool for adjusting the complexity
of the model, the user often does not have enough control
over the final shape of the estimation in many applications.
This paper uses the idea of ε-tube to build a regression model
whose complexity is prescribed by the user using the prior
knowledge that exists about the shape of the motion artifact.

B. Impedance Plethysmography

Impedance plethysmography, i.e., the impedance of body
tissue, can be used to extract the respiratory rate when mea-
sured on the arms [3]. It can be used to make a portable respi-
ration monitor (an armband) which captures the respiration
without imposing any restriction on the movements of the
subject. In this method, a small sinusoidal current is injected
into the segment of interest using two skin electrodes, called
current electrodes. The voltage difference along the path
between the current electrodes is then measured using two
other skin electrodes, voltage electrodes. Electrical resistance
of the tissue is then calculated using the voltage difference
between the electrodes which is caused by the passage of
the current through the tissue. Changes in the voltage, or

similarly the resistance, reflect changes of the blood volume
in the segment of interest since electrical conduction of the
tissue is mostly contributed by the blood conductivity.

One of the main sources of the blood volume change, in
particular in the chest and abdomen area, is respiration. Res-
piratory rate could be easily extracted from the impedance
signal acquired from the chest when subject is motionless.
However, motion is another main source of blood volume
change which could create drastic changes in the measured
impedance signal [4], resulting in changes whose amplitudes
are larger than the amplitude of the respiratory signal [5].

The purpose of this paper is to introduce a new motion
artifact modeling method which uses the idea of ε-tube to
remove simple motion artifacts of rising and dropping the
arm that interfere with the impedance signal. Removing more
complex motion artifacts in the general case is a future work
for this paper.

II. ε -TUBE REGRESSION
The main idea of the ε-TR method is to take advantage

of the prior knowledge that often exists about the artifact’s
general shape in motion artifact reduction. For example, the
impedance signal is shown in fig. 1 which is measured on the
subject’s arms while he is rising his arm and holding it up.
The z-axis component of the accelerometer signal can clearly
identify the movement of rising the arm, and it is known that
rising the arm increases the impedance of the arm tissue [3].
However, the body tries to maintain a constant blood flow
into the arm, and brings the impedance level to the baseline
as soon as the subject stops moving his hand. As a result,
the motion artifact comprises two segments, a rising one and
a decaying one with different rising and decaying rates. The
target signal to be extracted is the respiration component
which surges on top of the motion artifact and has an almost
constant amplitude. The algorithm should avoid modeling the
variations caused by the respiration and should only model
the motion artifact. The motion artifact could be modeled
by the combination of two tangent sigmoid functions, one
ascending and one descending (fig. 1). The idea of the ε-tube
is used so that the respiration wave can lie within the tube
and will not be modeled by the algorithm due to the fact that
the error is zero inside the tube. In this paper, only simple
movements of rising and dropping the arm are considered. As
mentioned above, the motion artifact caused by these moves
are similar to the shape in fig. 1. Therefore, two neurons
with tangent sigmoid AFs are enough to create the model,
one of which is ascending and the other one descending. The
output of the model is the minimum of the outputs of the
two neurons,

f (x,w) = min(a1o1(x,w)+b1,a2o2(x,w)+b2) (8)

where ai and bi are the scale and bias for the ith AF, and oi
is a tangent sigmoid function

oi(x,w) =
2

1+ e−ui
−1 and ui = wi1x+wi2. (9)

The input data x is a scalar here since the problem in hand is
one dimensional. The min function is used here instead of Σ
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since using the min function prevents neurons from affecting
the output of the model outside their working region (before
or after the peak), which is desirable in this application.

Using the slack variables as defined in (3), the optimization
problem becomes

Minimize Rζ ,ζ ∗ =
n

∑
i=1

ζi +
n

∑
i=1

ζ
∗
i (10)

such that
yi− f (xi,w)≤ ε +ζi, i = 1..n (11)

f (xi,w)− yi ≤ ε +ζ
∗
i , i = 1..n (12)

ζi ≥ 0, ζ
∗
i ≥ 0, i = 1..n (13)

a1 ≥ 0,a2 ≥ 0,w11 ≥ 0,w21 ≤ 0. (14)

Note that the term 1
2‖w‖

2 and the parameter C do not
exist in ε-TR since the final shape and complexity of the
approximation is fixed prior to the learning; thus, smoothness
of the model is guaranteed in ε-TR. This is the main
advantage of the proposed method since the model avoids
modeling the variations caused by the respiration and focuses
only on the motion artifact.

The drawback of the proposed method is that the opti-
mization problem is not convex anymore. As a result, the
optimization process might lead to local minimums. Thus,
choosing a good starting point for the optimization becomes
crucial here. We will first introduce a method to decide
the tube size, ε , and then discuss the initialization of the
optimization problem.

A. Choosing the ε

The size of the tube, ε , depends on the amplitude of the
respiration component of the signal. In order to measure
this amplitude, the accumulative histogram of the segment
of the signal that contains the motion artifact is formed. The
shape of the accumulative histogram has two segments. The
first segment rises rapidly while the second one has a small
derivative. The point at which the two segments are joined
is found using piecewise approximation (two pieces) of the
accumulative histogram. The first segment is assumed to be
associated with the periodic (respiration) component of the
signal, while the second one is associated with the motion
artifact. Thus, the weighted average of the elements in the
first segment is considered to be the bias of the signal, and is
removed from the signal. The frequencies of the histogram
elements are used as the weights in the calculation of the
bias. Next, the standard deviation of the points that fall in
the first segment is considered to be the amplitude of the
respiration component, and consequently the size of the tube.

B. Initialization of the Optimization Problem

The proposed optimization problem in (10) is a non-
convex one. As a result, the initialization of the problem
becomes a critical issue which affects both the performance
and the quality of the solution. Thus, using a good-quality
guess to initialize the optimization problem can increase the
performance and the accuracy of the method to a great extent.

First, the signal is scaled such that the peak of the signal is
set to be 0.5 and the baseline to be −1. Then, the ascending
and descending segments of the motion artifact between y =
−0.5 and y = 0.5 are extracted. The weights of the linear
least square approximations of the ascending and descending
segments are used for the initialization of the parameters of
the two sigmoid functions, as follows

wi1 = 2si and wi2 =−x∗i wi1 =−2x∗i si (15)

where si is the slope of the ith segment’s linear approx-
imation (i = 1 for the ascending segment and i = 2 for
the descending segment) and x∗i is its shift where yi = 0.
Moreover, the parameters a1 and a2 are initialized to 1, while
b1 and b2 are initialized to 0. Furthermore, ζi are set to
max(0,yi− f (xi,w)−ε), and ζ ∗i are set to max(0, f (xi,w)−
yi− ε).

III. EXPERIMENTS
The proposed method in this paper is used to remove the

motion artifacts from the impedance signal that is measured
on the arms. The respiratory rate is then extracted from
the filtered signal. The impedance signal is measured by
placing two current (injecting) electrodes on the wrists, and
two voltage (sensing) electrodes on the arms close to the
shoulders. This will allow the subject to freely move his/her
arms and other body parts.

Subjects were asked to stay in the siting position, and
to breath normally for a while, then raise their arm, breath
normally again, and then drop their arm. 18 instances of the
movement are collected from 4 healthy subjects and used to
assess the proposed method. The subjects were 3 males and
1 female, all 20 to 30 years old.

A Biopac MP150 is used to perform the experiments.
The modules that are used are Biopac EBI100C to measure
impedance signal and CO2100C to measure the airflow sig-
nal. The airflow signal is used as a reference for respiration to
measure the accuracy of the proposed method. The sampling
rate of the monitor was set to be 1 kHz, and the injected
current was 0.1 mA. Moreover, four Kendal 7365 Biotac
Ultra Foam ECG electrodes were used in the experiments.

IV. RESULTS AND DISCUSSIONS
In order to assess the effectiveness of the proposed

method, the accuracy of the respiratory rate extracted from
the impedance signal after removing the motion artifact using
ε-TR and the conventional SVR are compared. RBF and
polynomial kernels are used with the SVR method. More-
over, a neural network (NN) that consists of two neurons in
the hidden layer with sigmoid activation functions is used
to create a least squares model. The parameter selection to
find the best C and kernel parameters for SVR is done in
a subject-wise leave-one-out (LOO) manner, i.e., one of the
subjects is left out as the test subject, and several models are
trained with the rest of the subjects using different parameter
sets. Then the best model is chosen to be tested by the test
subject. The process has been repeated for every subject to
be the test subject exactly once. The tube size, ε , is chosen
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TABLE I
ACCURACY OF RESPIRATORY RATE EXTRACTION

Method No Filtering SVR NN ε-TR
Kernel - Polynomial RBF - -

Accuracy 16.4% 33.4% 56.9% 59.68% 86.2%

with the method introduced in section II-A for both ε-TR
and the conventional SVR.

First, the estimated motion artifact is subtracted from the
signal. Then, the respiratory rate is extracted from the fil-
tered signal using short-time-Fourier-transform (STFT). The
length of the window is 15s and the window slides 1s each
time. The frequency component which has the maximum
amplitude is used as the respiratory rate in that window.
Respiratory rate is extracted from the reference signal using
the same method, and the results are compared to find the
accuracy of each method. The results are shown in table I.

The accuracy of extraction of respiratory rate using SVR
with Polynomial and RBF kernels is 33.4% and 56.9%
respectively. An example of the original signal and the
estimations of the motion artifact using NN, SVR with
polynomial and RBF kernels and ε-TR are shown in fig.
2. The SVR models are generated using the best parameters
found. It can be seen that the polynomial kernel is too stiff
and has a poor accuracy in approximating the motion artifact.
Moreover, it bounces at the boundaries which adds some
error to the approximation. The RBF kernel has a better
accuracy in approximating the motion artifact. However, it
models parts of the respiration component before t = 5 and
after t = 20. The figure clearly shows that ε-TR method per-
fectly models the motion artifact while leaves the respiration
component unchanged. Fig. 3 shows the filtered signal using
different approximations. It is clear that the red line (filtered
using ε-TR) closely matches the reference signal while the
other two still contain motion artifact.

The proposed ε-TR algorithm has many advantages over
SVR in motion artifact reduction. First, the shape of the
regression model is prescribed in advance; thus, the problem
of finding a balance between error and smoothness does
not exist here as opposed to SVR. As a result, ε-TR does
not need the design parameter C and the kernel parameters.
Moreover, it solves the problem of lack of control over
SV selection since the AFs are chosen in advance. It does
not model the respiration component since the AFs are
only active during the period in which the motion artifact
exits. The disadvantages of ε-TR over the conventional SVR
algorithm is that the optimization problem is not convex
anymore which could lead to local minimums. In addition,
solving ε-TR optimization problem is more time consuming
than SVR since it is not a QP problem anymore.

V. CONCLUSIONS AND FUTURE WORKS

The ε-TR method for motion artifact reduction introduced
in this paper uses the idea of the ε-tube that has been
previously used in the SVR algorithm to model the motion

Fig. 2. Motion artifact estimation using different methods

Fig. 3. Signal after filtering using different methods

artifact while leaving the respiration component unaffected.
It uses the available information about the shape of the
motion artifact to prescribe the shape of the approximation.
The results show that ε-TR is superior to the SVR and LS
algorithms in motion artifact reduction.

The ε-TR needs to be expanded to model more complex
movements. The combination of multiple AFs can be used
to model combined movements. Moreover, the structure of
the optimization problem of ε-TR needs to be investigated to
increase the performance and speed of ε-TR. The proposed
method needs to be assessed in other applications and
with bigger datasets as well. Also, the effectiveness of the
proposed method in monitoring patients with tremor, e.g.
patients with Parkinson’s, needs to be investigated.
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