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Abstract— In previously published work [1] we presented a
real-time electrochemical impedance biosensor prototype sys-
tem and a state-space estimation algorithm for signal quantifica-
tion. Experiments in the interim have revealed some algorithm
failure modes which reduced the reliability and repeatability of
quantification. The present work describes a related algorithm
that introduces constraints based on a priori knowledge of the
expected signals predicted by the biosensor signal model. The
improvements in reliability and repeatability bring the system
close to deployment for real-world trials.

Index Terms— parameter estimation; signal model; prior
knowledge; impedance biosensor signal quantification

I. INTRODUCTION

Recent advances in unlabeled, electrochemical impedance

biosensor technology have made it a viable and enabling tool

for the clinical and life-sciences communities. Point-of-care

and portable, in-field applications especially stand to benefit

from its real-time operation.

Systems using an affinity-based impedance readout de-

tect changes at the sensor surface due to binding between

an immobilised layer of probe molecules and a sample

containing target (or analyte) molecules to be detected or

measured. Binding causes changes in the electrical double-

layer which are manifested by measurable changes in the

circuit impedance of the electrode—double-layer—solution

interface.
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Fig. 1. (a): Impedance measurement configuration (b): Equivalent
circuit of surface/solution interface

Most target detection methods use Electrochemical

Impedance Spectroscopy (EIS) to measure the impedance

spectrum of the sensor during a binding event [2].

Fig. 1(a) depicts a typical one-port quasi-linear device,

L, driven by stimulus voltage, v(t), and having response

current, i(t). The device, L, represents the impedance sensor

of a biosensor instrument. A commonly assumed equivalent

circuit model for the electrode-electrolyte interface in non-

faradaic operation—to which this paper is limited—is shown
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in Fig. 1(b), where RS is the solution resistance of the elec-

trolyte. This resistance is in series with a parallel connection

of RL, the leakage resistance associated with the double-

layer, and Cd, the double-layer capacitance, often modeled

by a constant phase element (CPE)1 [3].

The dominant indicator of target binding is a continuous

change (until equilibrium) in the value of Cd, suggested by

the “variable arrow” through Cd in Fig. 1(b). Estimates of

Cd are obtained by using Fig. 1(b) as a model which is fit

to the EIS spectra acquired during binding.

Alternate approaches to target detection and measurement

differ from EIS in that no circuit model is assumed and no

spectra are computed. Instead, the time-varying impedance

response at a single frequency is directly used to deduce

either the presence of specific target or information about

the binding kinetics. Endpoint methods measure the ab-

solute change in impedance from analyte injection until

binding equilibrium. Results from such methods require

long waiting times (40-80 minutes are typical in ssDNA

applications). Real-time methods use the changing impedance

signal as binding proceeds. Quantitative conclusions can thus

be quickly drawn early in the binding process. One such real-

time detection method is based on the initial response slope

[4]. Repeated area integration of the dynamic response has

also been suggested. These methods, however, return only a

scalar quantity that does not well reflect the kinetic binding

information. In [1], we presented a prototype impedance

biosensor system that used state-space estimation capable of

delivering signal parameters that were tied to the binding

kinetics. Further development of the biochemical protocols,

the instrumentation, and the algorithm have proceeded in the

interim. This paper focuses on the latter.

The algorithmic approach taken in [1] (and here) directly

uses the real-time impedance profile at a single frequency.

We assume an underlying binding model that is a function of

time. Such a model is described, for example, by the well-

known Langmuir Isotherm which approximates binding in

many practical cases. This gives rise to a mathematical signal

model which the time-dependent biosensor impedance should

obey (in the ideal case) as target binding proceeds. The

goal of the algorithm is to reliably and repeatably estimate

the model parameters. During the course of testing on real-

world biosignals, we discovered certain failure modes in

1A CPE has complex impedance given by 1/((jω)αQ) where ω is radian
frequency, Q is analogous to capacitance, and 0.5 < α < 1.0 is a parameter
that allows for modeling the sub-90◦ phase shift that is empirically observed
at the interface of solid metal electrodes. When α = 1 the element behaves
like an ordinary capacitor with Q = Cd.
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the estimation that were tied to the large amount of non-

linear signal noise, including deviations from the model. This

paper describes the improvements made to the estimation

procedure. These improvements prevent failures and reduce

estimation variance to a level acceptable for external proto-

type deployment for field testing.

The paper is organised as follows. Section II discusses

the biosignal model upon which the estimation algorithm

operates. In Section III we discuss the algorithmic failure

modes that we discovered as testing on real-world biosignals

proceeded. We discuss their cause and propose a constrained

estimation procedure that uses a priori knowledge of the

signal model. Section IV demonstrates the improvements

that the constrained algorithm gives in terms of key results

presented in [1]. Finally, Section V draws conclusions from

the results.

II. BIOSIGNAL MODEL

Assumption of a probe-target binding model as discussed

above leads to a signal model that obeys an exponential func-

tion whose binding rate decreases with time after analyte is

introduced into the buffer solution containing the biosensor.

This function of time, or sample index n in the discrete-

time case, is well-modeled by

|Z(t)| = A1 − A2e
−αt + ν(t), (1)

where α,Ak ≥ 0 are constants.

Before injection of analyte, |Z(t)|t=0 = A1 − A2 corre-

sponds to the constant offset at which the response starts, and

(ignoring drift) represents the biosensor baseline impedance

which is dependent on sensor topology, buffer concentration,

temperature, and stimulus frequency. The noise inherent in

all impedance biosensors is represented by ν. Shown in black

0 15001000 2000 3000
85000

90000

95000

100000

110000

105000

|Z
(t

)|
 (

O
h

m
s
)

t (seconds)

500 2500

Equilibrium

A2

A1

A1−A2

Fig. 2. Typical noisy impedance signal (black) and
impedance model function without noise (red).

in Fig. 2 is a typical noisy impedance signal during target

binding. An estimation algorithm takes such a signal as input

and extracts the exponential time constant, α, exponential

amplitude, A2, and the equilibrium (endpoint) amplitude, A1.

From these an estimate of the underlying model function

can be computed from Eq. 1. An example model function is

shown by the red curve in Fig. 2.

Both α and A2 hold important biochemical information.

The former tracks analyte concentration, and the latter is a

function of sensor surface coverage, which is correlated to

molecular affinity. An extended biosignal model, |Z(t)| =
A1 −

∑p

k=2
Ake−αkt + ν(t), where αk, Ak ≥ 0, applies

when two or more binding processes occur at once, as is

the case with specific and non-specific binding. In either the

p = 2 or p > 2 case, the magnitude(s) of αk tend to be

small and in proximity to the trivial exponential represented

by A1 = A1e
−α1t|α1=0.

The main difficulties in estimating the parameters of

either Eq. 1 or the multiple exponential model are the

closely spaced poles in the complex frequency domain, the

substantial additive noise in the impedance signals, and

the non-linear involvement of the parameters. To overcome

the difficulties, we investigated a number of increasingly

advanced deterministic estimation algorithms and settled on

the method presented in [5], as discussed in [1].

The method of [5], and the constrained algorithm dis-

cussed in Section III-B assume a general signal model com-

posed of uniformly spaced samples of a sum of p complex

exponentials corrupted by zero-mean Gaussian noise, ν(n),
and observed over a time aperture of N samples. This is

described by the formula

x(n) =

p∑

k=1

akeskn + ν(n)

=

p∑

k=1

akzn
k + ν(n) n = 0, 1, . . . , N − 1. (2)

where the parameters of the model are the complex ampli-

tudes, {ak}, and the complex frequencies, {sk}. The latter

can be written sk = −αk + j2πfk, with {αk} being the

pole damping factors and {fk} are the pole frequencies. The

{zk} are the discrete-time poles of the signal.

It is clear that the biosignal model is a special case of

Eq. 2, with two or more real poles2 in the complex Z-plane,

z1 =1 and zk =e−αk , and real-valued amplitudes, ak =Ak.

III. PARAMETER ESTIMATION

The mathematical description of the estimation procedure

used in [1] is presented in [5]. The method is an extension

of the Matrix Pencil algorithm of [6]. The extension esti-

mates the poles of an implicitly decimated signal. No signal

sample reduction is needed to accomplish the increased

pole separation (and hence increased resolution) that un-

aliased decimation naturally introduces. On the other hand,

the algorithm avoids the increased estimation variance that

explicit decimation entails. These features were beneficial to

our needs due to the proximity of α to the trivial pole in

Eq. 1.

A. Failure modes

As testing and verification progressed, some failure modes

were observed. An example of this was provided by the

acquired impedance signals shown in Fig. 3. The instrument

of [1] simultaneously measures an array of 15 biosensors

2We assume that the sampling period has been absorbed into the values
of {αk}.
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organised into three 5-sensor chambers. Two of the three

chambers were utilised to obtain the data of Fig. 3(top) where

all plots are referenced to 0 seconds.
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Fig. 3. Top: 3600 sec. of impedance data acquired from 10 sensors
functionalised toward adk. Blue signals show specific response to adk target
following Injection 2. Red signals show non-specific response of hly target
injected at the same time. Buffer solution with no analyte was injected
at Injection 1 for all sensors. Only drift response is seen. At Injection 3,
adk was injected in the red channels. Specific response is seen. Bottom:

Expanded view between Injection 2 and Injection 3. Analysis aperture starts
at 1624 sec. and extends to Injection 3.

All sensors were functionalised with probes designed

to bind to 35-mer oligonucleotide representing a unique

sequence in the adenylate kinase (adk) gene of E. coli. In

the chamber identified with the blue signals, adk target was

introduced at Injection 2 and we see the expected noisy

exponential specific response after an initial transient period.

At the same time a negative control analyte, 35-mer oligonu-

cleotide representing a unique sequence in the hemolysin

(hly) gene of E. coli, was injected into the chamber associated

with the red response. We see typical non-specific responses

from Injection 2 to Injection 3. The specific response data in

this segment, expanded in Fig 3(bottom), caused three failure

modes.

Fig. 4 depicts in grey the data within the Analysis Aperture

of the five specific response channels of Fig 3(bottom). Also

shown in red are the five estimated model functions for this

data. The data and models for the non-specific channels are

not shown but the estimates of α and A2 are either invalid3

or the cross-channel statistics indicate variability well outside

expected values. Both cases indicate non-specific binding.

We see from at least three of the red model curves in

Fig. 4 that something has gone amiss with the estimation

3By invalid we mean either negative Ak or αk , or values that are
obviously out-of-bounds for normal operation.
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Fig. 4. grey: Specific response data within Analysis
Aperture of Fig 3(bottom). red: Estimated signal model
functions for the five responses.

since neither Eq. 1 or its extension for p > 2 can give rise

to models that decrease. An examination of the estimated

signal poles in Fig. 5 reveals three failure modes. For three

Re{   }zRe{   }zRe{   }z

2 31

Fig. 5. Signal Pole locations for three failure modes: 1) two
negative poles; 2) nearly critically damped; 3) under-damped

of the signals, the estimated poles of Eq. 2 (p = 2) have been

plotted in the complex z-plane and the region around where

the unit circle intersects the Re{z}-axis has been expanded.

In the left-hand plot (1), we see that two significant

negative poles have been estimated. Neither of the estimated

values is close to the expected correct values. The more

negative pole underestimates (in absolute value) the expected

signal pole by more than 46%. These errors induce even

larger errors in the estimates of ak where, for example, a2

was estimated to be about 2000 whereas the expected correct

value should be in the range 550–800. Since neither pole is

constrained in the algorithm of [1], we should expect some

small non-zero error in the trivial pole on the unit circle. But

in this case the error is ten times the usual value due to large

deviation of the signal from the model and low operating

SNR. The middle plot (2) shows a second failure mode,

the nearly critically damped case. The estimated poles have

become complex conjugate though the negative real parts

dominate. The real part is still far from the expected correct

value and ak have also become complex. The right-hand plot

(3) shows a third failure: the poles are again complex but the

the imaginary parts dominate indicating oscillatory behaviour

in the estimated model. Clearly, no valid conclusions can be

drawn from these estimates.

We extrapolated the model curves in each of these cases

out to 4250 seconds and plotted these in Fig. 6 where the

impedance data is again shown in grey, the model curves are

shown in red, and the their extrapolations are shown in blue.
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Fig. 6. Extrapolated model curves showing the effect of
the three failure modes depicted in Fig. 5. grey: Specific
response data. red: Estimated signal model functions. blue:
Extrapolated signal model functions. green: Constrained
signal model functions.

The over-damped, nearly critically damped, and under-

damped behaviour is clearly seen in the extrapolated plots.

A forth failure mode, not shown, occurs when a substantial

drift component (or unexplained electrochemical behaviour)

causes an upward-going slope as the response approaches

equilibrium. In this case two real poles result but the trivial

pole becomes substantially positive, again introducing unac-

ceptably large errors into α and A2.

In all these cases the problem arose because the known

trivial pole was not constrained to z = 1. There we

investigated constrained algorithms in the same class as the

one we used in [1].

B. Constrained Estimation

The estimation algorithms under consideration fall into the

class of State-space Signal Modeling approaches that have

wide application in signal array processing, medical MR

spectrum analysis, speech processing, and now impedance

biosignal analysis. The tutorial paper [7] by Rao and Arun

contains an excellent discussion of the basic ideas, although

much development has occurred since its publication.

All of the state-space algorithms break the general non-

linear estimation problem into two steps. The first estimates

the {zk} and the second estimates the linearly involved {ak}
in Eq. 2, given the poles. Step 1 of all the methods depends

on the so-called row or column shift-invariant property of the

noiseless Hankel matrix formed from x(n) in Eq. 2. Finally

all of the techniques involve a principal component, or SVD,

decomposition in step 1 to dramatically reduce the effects

of noise on the final estimates. The techniques differ by

(among other things) when the SVD and the matrix shifting

is applied and how decimation is accomplished within the

algorithms. Reference [8] discusses the steps of most of the

various methods.

We apply the method discussed in [9] and [10] in order to

introduce constraints on some pole locations. In brief, this

method reduces to writing the noiseless Hankel data matrix,

X , of x(n), in terms of its Vandermonde Matrix expansion:

X = ACBT . If m pole locations are known, then m columns

of A may be explicitly specified. We thus form AK consisting

of the m known columns of A and then perform a QR

decomposition of AK : AK = QR. The first m columns of Q

span the column space of AK , and the remaining columns of

Q, Q⊥, span the orthogonal complement of the column space

of AK . Using Q⊥ we can thus project X onto the orthogonal

complement of its column space, X̂ = QH
⊥

X thus removing

the contribution of the known poles from the system. Care

must be taken to note that this projection destroys the shift-

invariant property of the column space of X̂ . However the

shift-invariant property of its row space remains intact [11]

and may be used to derive a constrained form of the HTLS

algorithm4.

Using the preceding ideas we derived the constrained

HTLS algorithm for the case of a known real pole on

the unit circle and applied this estimation procedure to

our impedance biosensor signals. We note in passing that

the constrained algorithm is no longer implicitly decima-

tive. However a number of factors—improvements in (i)

the sampling and signal conditioning amplifiers, (ii) sensor

array manufacturing process, (iii) sensor surface preparation

and bio-functionalisation protocol and, not least of all, the

constrained algorithm itself—have removed the need for

implicit or explicit decimation so that very small magnitude

signal poles can be successfully distinguished from the trivial

baseline pole using constrained HTLS alone.

IV. RESULTS

One set of curves, the green model curves in Fig. 6

have not yet been discussed. These curves are the result

of applying the constrained algorithm to the biosensor

impedance signals in grey. As can be seen the top two green

curves have an almost identical decay constants, α. Only the

amplitudes, A2, differ. The bottom curve has a slightly larger

(in magnitude) decay constant and a smaller amplitude. In

fact, the values of α for all five specific responses in Fig. 4,

which include the three under discussion, are within 15%

of their average value, and four of them are within 7%—an

excellent result given the deformed and noisy character of

the signals. The average pole position, and the pole to be on

the unit circle are shown in right-hand plot of Fig. 5 in the

green-boxed region.

The chief result in [1] was the original algorithm-and-

system’s ability to statistically distinguish nearby variants or

strains of real-world E. coli. In that experiment, ssDNA was

used from two E. coli variants, F11 and F24, that differed

by just 1 nucleotide in 5. There were four sensors in each

of two chambers. All sensors were functionalised toward

F11—the the specific target. The difference in affinity to the

probe due to the nucleotide variation induced a statistically

significant change in A2 which we detected. The details of

the experiment are discussed in [1].

The salient point is that, although we had distinguished the

strains, the 95% confidence intervals are only just separated,

as can be seen in Fig. 7. Furthermore we could draw no

conclusions at the time from the values of α across the

array. We assumed that α should have been roughly constant

4The basic HTLS algorithm is also known in the literature as TLS-
ESPRIT
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Fig. 7. Estimated response amplitude (A2 in Eq. 1) plotted against channel.
Channels 1–4 correspond to F24 ssDNA target in one chamber, and channels
5–8 to F11 ssDNA and a second chamber. A small statistical separation in
A2 can be seen between the chambers.

across all sensors since target concentration was the same for

the F11 chamber and the F24 chamber. Another possibility

would have been correlation within each chamber and a

possibly significant variation between the two chambers

(as with A2) due to slight differences in the amount of

target injected in each chamber, i.e., a slight difference in

concentration due to manual pippeting. In fact neither of

these could be seen. The variability in α was simply too

high due to very low signal quality.

We applied the proposed constrained algorithm to the same

data and plotted the new results in blue, overlaid onto the

previous results. These are shown in Fig. 8.

Fig. 8. Bar graphs in blue show the results of applying the constrained
estimation scheme to the data of Fig. 7. The statistical separation in A2

between the chambers is much improved compared to Fig. 7.

As can be easily seen, the statistical separation of the

confidence intervals for A2 is substantially improved. In

addition, we can now see the expected behaviour in α. All

values in the F11 chamber are slightly smaller in absolute

value than those in the F24 chamber. Though this is not

important as far as the distinguishing of F11 and F24, which

depends only on A2, it is interesting that the improved

algorithm reveals previously invisible details.

V. CONCLUSION

We introduced at EMBC 2010 an impedance biosensor

system and state-space signal quantification algorithm for

estimating the parameters of acquired biosignals. Extensive

testing on real-world DNA affinity binding signals has since

revealed various failure modes in the use of that algorithm.

The algorithm’s key weakness in the context of our biosensor

system is the lack of a ready mechanism for introducing

constraints based on a priori knowledge of the signal model.

Here, we have proposed a new constrained algorithm that is

appropriate for our signal model. The results are very promis-

ing, with no further failure modes observed over a wide

variety of difficult analysis cases given by our biochemists,

and with a substantial reduction in parameter variance. These

results bring the instrument to the point where deployment

for external trials can begin. Deployment is, indeed, now

only a few weeks away.
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