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Abstract— This paper proposes a new method to identify
people using Electrocardiogram (ECG), particularly the QRS
complex which has been proven to be stable against heart rate
variability and convenient to be used alone as a biometric
feature. 324 QRS complexes are extracted from ECGs of
18 subjects in Physionet’s MIT-BIH Normal Sinus Rhythm
Database (NSRDB). Multilayer Perceptron (MLP) and Radial
Basis Function (RBF) neural networks are used to classify those
QRS complexes. If the training data are chosen carefully to
cover a wide range of input values (i.e. QRS complexes), then
the classification accuracy rates can reach above 98% using
MLP and 97% using RBF.

I. INTRODUCTION

The electrocardiogram (ECG) (Fig. 1) is a biological
signal which has recently attracted attention of researchers
as a new way to identify a person [1]-[2]. ECG is difficult
to falsify and possesses many discriminative features such as
the three major waves: P wave, QRS complex and T wave.
These differences derive from anatomical structure of each
person’s heart and many physiological conditions [1]. Biel

Fig. 1 – ECG Waveform

et al. [3] were among the first researchers who proved the
capability of ECG as a new biometric. They used a diagnostic
ECG device to record 12-lead resting ECGs which could
be a limitation of their work. Resting ECG signals do not
accurately reflect changes in heart rates of people as they
experience different physical and emotional conditions in
their real lives.

Sufi et al. [4] progressed a step further to propose a new
patient authentication technique from compressed ECG. As
the lengths of compressed ECG segments are substantially
smaller than plain text ECG segments, the authentication
process will be speeded up, enabling faster diagnosis and
treatment of emergency cardiac patients in wireless telecar-
diology applications. However, data used in their experiment
were from public ECG databases where each person has
one record. Some parts from this record were used for
learning and other parts were used for testing. Moreover
these databases often do not contain ECGs with changed
heart rate for each person as they include only resting ECG
signals.

So far as we know, most of the research works on ECG
biometric either collect data from multiple subjects across
multiple sessions as in [5], [6] or use ECG data from public
ECG databases as in [4], [2]. In the latter case, they have
to show that ECG features used in their work are stable
against heart rate variability to avoid the above mentioned
limitations. Tawfik et al. [6] collected ECG data from 22
healthy males and females with a relatively wide range
of heart rates for each person at different test sessions to
simulate different conditions occurring in real life. One of
their conclusions was that the QRS complex showed great
stability with changes in heart rate, while both T and P waves
vary according to different heart rates.

The above conclusion has given us a strong reason to use
QRS complex which is proved to be stable against heart
rate variability. Additionally, we utilize two of the most
popular types of neural networks as classifiers. Multilayer
Perceptron (MLP) and Radial Basis Function (RBF) neural
networks have their remarkable abilities to derive meaning
from complicated or imprecise data, and can be used to
extract patterns and detect complex trends.

The rest of the paper is organized as follows. Section II
discusses how we collected, pre-processed and arranged ECG
data (i.e. QRS complexes) into input and output matrices.
Next, in section III, we discuss architectures of MLP and
RBF neural networks used in out experiments. In section IV
we discuss how the proposed system was implemented and
results of our experiments. Finally, section V concludes the
paper.

II. DATA PREPARATION

A. Collecting Data

We randomly collected 324 QRS complexes from 18 sub-
jects in MIT-BIH Normal Sinus Rhythm Database (NSRDB),
which is available on Physionet website [7]. Each QRS
complex was represented by 23 points from p1 to p23 in
millivolts. Fig. 2 shows an overview of our data. Fig. 3 shows
the graph of one QRS complex taken from subject s16265.
12 QRS complexes of each subject were plotted and placed
next to each other in Fig. 4. These plots show clearly the
differences between QRS complexes of 18 subjects used in
this experiment.

B. Pre-processing Data

Our training dataset contained 216 QRS complexes of 18
subjects. Each subject had 12 QRS complexes that were
inputs applied to our neural networks. The subjects that
those networks predicted (i.e. outputs) would be compared to
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Fig. 4 – Differences between QRS complexes of the 18 subjects used in this experiment

Fig. 2 – Overview of the data used in this experiment

Fig. 3 – A QRS complex taken from subject s16265

the known subjects (i.e. targets). Many learning algorithms
can be used during this leaning stage to adjust network
parameters such as weights and biases to move the outputs
closer to the targets.

We carefully chose training data so that it includes all
the data points close to decision boundaries defining a
subject. For each subject, the training dataset would include
QRS complexes that have minimum and maximum R peak
amplitudes among all QRS complexes of that subject, while
the test set would only include QRS complexes with R peak
amplitudes within this range. Although neural networks can
be trained to generalize well within the range of inputs
in training datasets (i.e. interpolation), they have limited
abilities to accurately extrapolate beyond this range [8].

The input matrix had 23 rows and 216 columns as shown
in Fig. 5. Each column contained the data of a QRS complex.
The number of rows was equal to the number of points
we used to plot a QRS complex. The target matrix in
Fig .6 stored all known subjects of QRS complexes in the

Fig. 5 – Overview of the input matrix

input matrix. Each of its columns represented one known
subject and corresponded to one column of the input matrix.
Therefore, the target matrix also had 216 columns. There
were 18 distinct subjects so the target matrix had 18 rows
from a1 to a18. Elements of target matrix are 1s and 0s only.
Each subject was different from another by the position of
the only element 1 in that column while other elements were
0s. Fig. 6 shows an overview of the target matrix.

Fig. 6 – Overview of the target matrix

The test dataset contained 108 QRS complexes of 18
subjects. Each subject had 6 QRS complexes. The test set
was used to determine the classification accuracy rate, and
to measure and compare the performance of MLP and RBF.
The test set was also represented by input and target matrices.
Their formats were very similar to those shown in Fig. 5 and
Fig. 6.

III. SYSTEM ARCHITECTURES
The building blocks of neural networks are many artificial

neurons connected together to produce a combined effect.
For each type of neural network, we will start by describing
the architecture of each neuron followed by the overall
description of the network.
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A. MLP Neural Network Architecture
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Fig. 7 – Structure of a neuron used in MLP neural network

MLP neural network is a network of many neurons or-
ganized into layers called hidden and output layers. Fig. 7
shows the structure of one of the neurons we used to build
our MLP network. Each QRS complex is represented by 23-
element column vector p. Each element of the input vector
is conceptually connected to each neuron through a weight
matrix W . The dot product in equation (1) is performed to
obtain a weighted input W • p.

W • p = W1p1 +W2p2 +W3p3 + ...+W23p23 (1)

The results is then added to the bias b to obtain the net
input n which is passed through the Tan-Sigmoid transfer
function (Fig. 8a) [9] to produce the output a. Equation (2)
summarizes this process.

a = tansig(W • p+ b) = tansig(n) (2)
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Fig. 8 – Graphs of Tan-Sigmoid transfer function (a) [9] and
Radial Basis transfer function (b) [10]

In this experiment, we used a two-layer MLP neural
network with 35 neurons in the hidden layer and log-sigmoid
transfer functions for the hidden and output neurons as shown
in Fig. 9. We selected the number of neurons in the hidden
layers manually so that it was enough for the network to
converge while making sure that overfitting did not occur.
[11]. The number of neurons in the output layer is equal
to the number of distinct classes [11]. Hence, we used 18
neurons in the output layer.
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Fig. 10 – Structure of a radial basis neuron. (The ∥w − p∥
box in this figure accepts the input vector p and the single row
input weight matrix W , and produces the Euclidean distance
of the two)

B. RBF Neural Network Architecture
Radial basis networks require more neurons than standard

feedforward backpropagation networks, but can often be
designed in a fraction of the time it takes to train standard
feedforward networks. Fig. 10 shows the structure of a
typical radial basis neuron. Here the Euclidean distance
between p and W is calculated using Equation (3).

d(W,p) =

√
(W1 − p1)

2
+ (W2 − p2)

2
+ ...+ (W23 − p23)

2

(3)
The results is then multiplied by the bias b to obtain the
net input n which is passed through the radbas transfer
function (Fig. 8b) [10] to produce the output a. Equation
(4) summarizes this process.

a = radbas(∥w − p∥ b) = radbas(n) (4)

In this experiment, we used a two-layer RBF neural network
as shown in Fig. 11. The number of radbas neurons in the
hidden layer was 216 which was equal to the number of QRS
complexes in the training dataset. This is also the drawback
of this type of RBF because the number of hidden neurons
is determined by the number of input vectors [12]. There
were 18 neurons in the output layer. Competitive transfer
functions [13] were used in the output layers.

IV. IMPLEMENTATION AND RESULTS
In MATLAB environment, we used the training dataset to

train the MLP neural network in Fig. 9 several times. This
helped the network to start with different initial conditions
(i.e. initial values of input weights and biases) before each
training cycle [11]. Finally, after several training cycles, the
mean square error dropped to an acceptable value which
was below 3.56×10−3 in our experiment. The trained MLP
network was then tested with the testing dataset. Final results
are shown in Table I. Also in MATLAB, the RBF neural
network in Fig 11 was initialized and tested using the training
and testing dataset respectively. Final results are shown in
Table I.

Using Weka, we combined the training with the testing
dataset into one dataset which had 324 QRS complexes. Both
MLP and RBF neural networks were used with 10-fold cross
validation to classify those QRS complexes. When working
with RBF network, 18 clusters were used because there were
18 distinct subjects. Final results are shown in Table II.
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Fig. 9 – Architecture of the MLP neural network used in this experiment

Fig. 11 – Architecture of the RBF neural network used in this experiment

MLP RBF
Correctly Classified Instances 106 107

Incorrectly Classified Instances 2 1
Accuracy rate 98.15% 99.07%

TABLE I – Classfication results obtained using MLP and
RBF neural networks in MATLAB environment over 108 QRS
complexes of 18 subjects

MLP RBF
Correctly Classified Instances 323 316

Incorrectly Classified Instances 1 8
Accuracy rate 99.69% 97.53%

TABLE II – Classification results obtained using MLP and
RBF neural networks in Weka environment over 324 QRS
complexes of 18 subjects

V. CONCLUSION

The results have shown a high level of accuracy when
using QRS complexes to identify people. Multilayer Per-
ceptron and Radial Basis Function neural networks have
also shown their usefulness in this classification task. After
training, these networks can be reused multiple times for
those distinct 18 subjects. Multilayer neural networks can
be trained to generalize well within the range of inputs for
which they have been trained. However, they do not have the
ability to accurately extrapolate beyond this range. Therefore,
the training data should be chosen carefully to cover a wide
range of input values to the neural networks to obtain the
highest level of accuracy.
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