
  

  

Abstract— For patients with Type 1 Diabetes Mellitus 
(T1DM), hypoglycemia is a very common but dangerous 
complication which can lead to unconsciousness, coma and even 
death. The variety of hypoglycemia symptoms is originated 
from the inadequate supply of glucose to the brain. In this 
study, we explore the connection between hypoglycemic 
episodes and the electrical activity of neurons within the brain 
or electroencephalogram (EEG) signals. By analyzing EEG 
signals from a clinical study of five children with T1DM, 
associated with hypoglycemia at night, we find that some EEG 
parameters change significantly under hypoglycemia condition. 
Based on these parameters, a method of detecting hypoglycemic 
episodes using EEG signals with a feed-forward multi-layer 
neural network is proposed. In our application, the 
classification results are 72% sensitivity and 55% specificity 
when the EEG signals are acquired from 2 electrodes C3 and 
O2. Furthermore, signals from different channels are also 
analyzed to observe the contributions of each channel to the 
performance of hypoglycemia classification.  

I. INTRODUCTION 
CCORDING  to the Diabetes Control and Complications 
Trial Research Group [1], intensive insulin therapy is 

an effective treatment for Type 1 Diabetes Mellitus (T1DM) 
patients which can significantly delay the appearance as well 
as reduce the risk of acute diabetic complications like 
retinopathy, nephropathy and neuropathy. However, it also 
increases threefold the incidence of hypoglycemia among 
T1DM patients over conventional therapy. Hypoglycemia, 
which is the medical term of the state of low blood glucose 
level (BGL), is the most dangerous complication for 
individuals with T1DM. It is considered as an important 
barrier which limits the application of glycemic control 
therapies for diabetes patients.  

Hypoglycemia can produce a variety of symptoms, from 
mild to severe episodes [2, 3]. Mild hypoglycemia causes 
sweating, nervousness, heart plumping, confusion, anxiety, 
etc. It can be fixed by eating or drinking glucose-rich food. 
If left untreated, hypoglycemia can become severe and lead 
to seizures, coma, and even death. Hypoglycemia reduces 
the quality of life for patients as well as carers by causing 
chronic anxiety about future potential hypoglycemic 
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episodes [4]. 
One of the most dangerous effects of hypoglycemia is 

hypoglycemia unawareness. This is caused by frequent 
episodes of hypoglycemia which can lead to changes in the 
response of patients’ bodies. In unawareness situations, 
patients’ bodies do not release the hormone epinephrine 
which is the origin of early warning symptoms for patients 
like sweating, hunger, anxiety [3, 5]. Because of no warning, 
patients normally cannot realize the occurrence of 
hypoglycemia until it becomes severe and could lead to fatal 
damage. Nocturnal hypoglycemia is especially fearful for 
T1DM patients as sleep can make the symptoms unclear. 
Because of its severity, a large number of studies have been 
conducted to develop a system that can detect the onset of 
hypoglycemia and give an alarm in time for patients with 
T1DM.        

Currently, there are some devices using different 
techniques to detect hypoglycemia on the market. Some of 
them require gradually taking patients’ blood samples to 
determine the blood glucose level. This method gives 
relatively exact information about hypoglycemic status. 
However, taking blood is uncomfortable for patients and it is 
very inconvenient for continuous monitoring, especially 
during night. Obviously, non-invasive technique is a better 
solution for these disadvantages.  
    Recently, we developed an effective and sensitive system 
to monitor hypoglycemia non-invasively using physiological 
parameters such as heart rate, skin impedance and 
electrocardiogram (ECG) parameters [6, 7]. However, 
although hypoglycemia can produce a large number of 
symptoms, like sweating or increased cardiac output, the 
principal problems arise from an inadequate supply of 
glucose, which is the primary metabolic fuel to the brain [5]. 
Since the electroencephalogram (EEG) signal is directly 
related to the metabolism of brain cells, hypoglycemia is 
believed to cause early changes in EEG that can be detected 
non-invasively.  

Previous studies have attempted to find changes in EEG 
signals due to hypoglycemia [8-10]. Nevertheless, they 
stopped at using statistical techniques to point out 
spontaneous EEG changes caused by the onset of 
hypoglycemic episodes, or permanent EEG changes caused 
by frequent episodes.  

In a recent study, researchers proposed a methodology of 
using digital signal processing and artificial neural network 
to detect hypoglycemia from EEG signals [11]. This study 
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led to the results of 49.2% accuracy, 76% sensitivity and 
32.5% specificity when the neural network was trained and 
validated with different subject groups. In another study, 
EEG was used as the physiological parameters to detect 
hypoglycemia [12]. Although this study has produced a real-
time system that can detect hypoglycemia, it uses implanted 
electrodes to record EEG signals. Recently, we proposed a 
Bayesian neural network algorithm for the detection of 
hypoglycemia using EEG signals and surface EEG 
electrodes [13]. 

In this paper, we aim to explore the effects of nocturnal 
hypoglycemia on EEG signals derived from T1DM patients. 
Using Fast Fourier Transform (FFT), different EEG 
parameters are extracted and analyzed to find important 
features that significantly change under hypoglycemia 
conditions. The EEG signals from different brain positions 
are used to observe the response of different brain area to 
hypoglycemia. Finally, a method of classification using 
neural network will be investigated to classify hypoglycemia 
from EEG signals. Section II provides an overview of the 
methodology used in our study. Results of the study will be 
mentioned in Section III. A conclusion for this study is 
drawn in Section IV.  

II. METHODS 

A. Study 
Five T1DM adolescents (between the ages of 12 and 18 

year old) volunteered for the overnight hypoglycemia study 
at the Princess Margaret Hospital for Children in Perth, 
Australia. During the study,  EEG signals were continuously 
recorded and stored using a Compumedics system with the 
sampling rate of 128 Hz. The EEG electrodes were 
positioned at O1, O2, C3 and C4 according to the 
International 10/20 system, referenced to Cz. We also placed 
2 electrodes at patients’ chins to acquire the electro-
myogram (EMG) signals and 2 electrodes near patients’ eyes 
to measure the electro-oculogram (EOG) signals. The actual 
BGLs were routinely collected to be used as reference using 
Yellow Spring Instruments with the general sampling period 
of 5 minutes. Data were collected with the approval of the 
Women’s and Children’s Health Service, Department of 
Health, Government of Western Australia, and with 
informed consent.  

B. Feature extraction 
After finalizing the signal acquiring step, signal 

processing is carried out using EEGLAB [14]. In EEGLAB, 
EEG signals from patients are filtered using an IIR highpass 
filter with a cut-off frequency of 2 Hz to get rid of low 
frequency artifacts and a notch filter at 50Hz to remove 
power noise. The data after being processed which consist of 
two phases (normal and hypoglycemia) are segmented into 
5-second segments. A visual artifact-rejecting method is 
used to exclude EEG segments contaminated with artifacts. 
Segments containing significant artifacts are discarded based 
on EMG and EOG signals. Finally, the non-artifact signals 

are transformed into the frequency domain using Fast 
Fourier Transform (FFT). This transformation results in the 
power spectral density P(f) which then is subdivided into 3 
frequency bands: theta (θ: 3.5-7.5Hz), alpha (α: 8-13 Hz) 
and beta (β: 13.5-30Hz).  

The final extracted feature set includes 6 parameters at 
each electrode position or channel.  The power level within 
each band at each channel is calculated using a numerical 
integration technique (the trapezoidal rule). The centroid 
frequency is defined as the center gravity of each frequency 
band which subdivides the area under the spectral curve into 
two identical parts.  

The Student’s t-test is then applied to every feature to 
estimate the differences between pre-hypoglycemia and 
hypoglycemia conditions. Probability values (p-values) less 
than 0.05 are considered to be significant. The statistically 
significant features will be used as inputs for the 
classification. Moreover, in this study, we also explore the 
differences between electrode positions to find out whether 
the responses to hypoglycemia of different channels are 
similar or not.   

C. Classification 
Artificial neural networks [15, 16] have been employed 

popularly in biomedical area as a powerful tool of 
classification and pattern recognition. It has been recognized 
that neural network is a successful method in classifying 
complex situations. It can effectively model non-linear 
relationships between inputs and outputs.  

In this study, we develop a neural network with feed-
forward multi-layer structure for hypoglycemia 
classification. This neural network is trained by the 
Levenberg-Marquardt algorithm which is an effective 
training algorithm. This network consists of one input layer 
which includes the features extracted from EEG signals, one 
hidden layer and one output layer. The output layer has one 
node which indicates the state of hypoglycemia or non-
hypoglycemia. In our study, the BGL threshold for defining 
hypoglycemia state is set at 3.3mmol/l. 30 data points from 
each patient are used for comparison and classification, 
corresponding to the 5-minute duration of each blood 
glucose sampling point. At each blood sampling point, a 30-
second non-artifact fragment of signal is used and divided 
into six 5-second segments for the feature extraction. The 
overall data are grouped into a training set, a validation set 
and a testing set. The optimized neural network is trained 
from the training set with a stopping procedure determined 
by the validation set. The testing set is then used to test the 
generalization of the neural network. 

III. RESULTS 
The responses of five patients show significant changes 

during the hypoglycemia state against pre-hypoglycemia 
state. The actual BGL profiles used in the study are shown in 
Fig. 1.  
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  Fig. 1.  Actual blood glucose level profiles in 5 T1DM children 
 

Statistical results at each channel are presented in Tables 
I-IV. Significant features are reported in bold. Because the 
power levels are very different between patients, an 
appropriate normalization strategy is used to reduce the 
variability of these features and to enable group comparison. 
To do this, we normalize each patient’s power levels against 
their corresponding values at time zero. There are some 
slight changes in alpha power and theta power at channels 
O1 and O2. The beta power levels at all channels except C3 
do not change significantly between normal and 
hypoglycemia states. Because these responses are not 
consistent with all patients, possibly they are caused by the 
changes in sleep stages of patients during night. The study 
shows that the centroid alpha frequency is the most 
significant feature. Under hypoglycemia conditions, the 
centroid alpha frequency of 5 patients reduces significantly 
at all four channels (p ≤ 0.0001). The results also show an 
increase in centroid theta frequency at all channels (p = 
0.026 at O2, 0.007 at C3 and 0.006 at C4). There is no 
significant change in the centroid beta frequency across all 
four channels (p = 0.037 at channel C3 and p > 0.05 at 
others). These results demonstrate that during the 
hypoglycemia onset, possibly there is a power shift to the 
border area between alpha band and theta band in the power 
spectra of EEG signals. This is   an important finding that 
should be explored more in future studies to find other 
features which can enhance the performance of 
hypoglycemia classification. 

Based on these statistical results, the most significant 
features are selected as inputs of classification. The final set 
has 8 features including the centroid theta frequency and the 
centroid alpha frequency at each channel. A neural network 
is developed using these features as inputs. 

TABLE I 
CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL C3 

Feature Normal State Hypoglycemia State p-value 

Power θ 1.5435 ± 0.7411 1.4107 ± 0.6309 p = 0.01 
Power α 0.8802 ± 0.3596 0.8510 ± 0.3147 p = 0.242 
Power β 0.7694 ± 0.1965 0.8284 ± 0.4013 p = 0.011 
CF θ 5.2347 ± 0.2304 5.2800 ± 0.2323 p = 0.007 
CF α 10.2910 ± 0.3107 10.1531 ± 0.3415 p ≤ 0.0001 
CF β 19.8080 ± 0.7664 19.9430 ± 0.8253 p = 0.037 

 

TABLE II 
CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL C4 

Feature Normal State Hypoglycemia State p-value 

Power θ 1.3392 ± 0.7256 1.3177 ± 0.7793 p = 0.691 
Power α 1.1012 ± 0.4812 1.0982 ± 0.4117 p = 0.928 
Power β 0.8907 ± 0.2827 0.9305 ± 0.3601 p = 0.078 
CF θ 5.2318 ± 0.2128 5.2757 ± 0.2377 p = 0.006 
CF α 10.2688 ± 0.3136 10.1619 ± 0.3221 p ≤ 0.0001 
CF β 20.0541 ± 0.8664 20.1644 ± 0.8197 p=0.074 

 
TABLE III 

CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL O1 

Feature Normal State   Hypoglycemia State p-value 

Power θ 1.6606 ± 0.9692 1.5098 ± 0.8384 p = 0.025 
Power α 0.7080 ± 0.4129 0.7950 ± 0.5205 p = 0.008 
Power β 0.7866 ± 0.3459 0.8348 ± 0.4015 p = 0.069 
CF θ 5.2586 ± 0.2260 5.2897± 0.2375 p = 0.095 
CF α 10.2369 ± 0.3046 10.0835± 0.3160 p ≤ 0.0001 
CF β 19.8029 ± 0.8032 19.8078± 0.7550 p = 0.932 

 
TABLE IV 

CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL O2 

Feature Normal State Hypoglycemia State p-value 

Power θ 1.6249± 0.9068 1.4449 ± 0.7043 p = 0.003 
Power α 0.7717 ± 0.3769 0.8838 ± 0.4971 p ≤ 0.001 
Power β 0.7659 ± 0.3246 0.8081 ± 0.3617 p = 0.084 
CF θ 5.2592 ± 0.2077 5.2948 ± 0.2433 p = 0.026 
CF α 10.2110 ± 0.2929 10.0883 ± 0.3224 p ≤ 0.0001 
CF β 19.7804 ± 0.7880 19.7957 ± 0.6643 p = 0.779 

 
The overall data are grouped into a training set, a 

validation set and a testing set, with ratio of 2:1:2 patients. 
The corresponding Receiver Operating Characteristic (ROC) 
Curve for the combined training/validation dataset is shown 
in Fig. 2. With this ROC curve, the most suitable cut-off 
point is selected as the threshold to distinguish between the 
hypoglycemia and normal states. To make the comparison 
between cases easier, we choose the point that gives the 
result of 70% sensitivity for the training/validation set.  
After training, the testing set is applied to find the testing 
sensitivity and specificity. All results are reported in Table 
V. The best number of hidden node is also given in this 
table. 

Another purpose of our study is to find out how the 
responses of different channels contribute to the 
performance of classification. To do this, different neural 
networks are developed with inputs corresponding to data 
from only one EEG channel or from two EEG channels 
separately. For the consideration of the results from two 
EEG channels, we evaluate the results from various two 
channels at different sides and different areas of the brain 
(C3 and O2, C4 and O1).  
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TABLE V 
CLASSIFICATION RESULTS  

Inputs Number of 
Hidden node 

ROC 
area 

Cut-off 
point 

Sensitivity 
(%) 

Specificity 
(%) 

O1,O2,C3,C4 8 0.72 -0.3537 70 55 
O1 10 0.64 -0.3370 74 49 
O2 7 0.69 -0.3494 70 51 
C3 7 0.66 -0.3343 78 37 
C4 8 0.61 -0.3422 75 36 
O2,C3 9 0.71 -0.3133 72 55 
O1,C4 9 0.68 -0.4072 71 47 
 

The classification using data from all four channels results 
in a sensitivity of 70% and specificity of 55% which indicate 
a potential ability of detecting hypoglycemia from EEG 
signals. With these results, it is proved that centroid theta 
frequency and centroid alpha frequency are two important 
features in hypoglycemia detection. When using the features 
of one channel only, the classification results are very 
similar between O1 and O2 as well as C3 and C4. The 
results are better at O1 and O2 against those at C3 and C4. 
Hypoglycemia classification using data from the two EEG 
channels with electrodes positioned at O2, C3 yields the best 
results with 72% sensitivity and 55% specificity. These 
results demonstrate that neural network algorithms can be 
developed to provide good detection of hypoglycemia 
episodes using only two EEG channels or even one EEG 
channel. With the final aim of developing a real-time EEG 
system to early detect hypoglycemic episodes in patients 
with T1DM, reducing the number of features as well as 
electrodes is very important for effective real-time 
implementation. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

   Fig. 2.  ROC Plot 

IV. CONCLUSION 
In this paper, we explore the changes of EEG parameters 

associated with hypoglycemia in T1DM patients. A neural 
network algorithm is developed to detect episodes of 
hypoglycemia from EEG signals. With classification results 
of 72% sensitivity and 55% specificity derived from two 
channels C3 and O2, it is shown that hypoglycemia can be 
detected non-invasively and effectively using EEG signals. 
However, the overall accuracy including both sensitivity and 

specificity would be improved. For future research, a post-
classification stage which involves some effective trending 
strategies will be developed. Moreover, advanced 
computational intelligence technologies will be applied to 
enhance the performance of hypoglycemia detection.  
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