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Abstract— Arousal from sleep are short awakenings, which
can be identified in the EEG as an abrupt change in frequency.
Arousals can occur in all sleep stages and the number and
frequency increase with age. Frequent arousals during sleep
results in sleep fragmentation and is associated with daytime
sleepiness. Manual scoring of arousals is time-consuming and
the inter-score agreement is highly varying especially for
patients with sleep related disorders. The aim of this study was
to design an arousal detection algorithm capable of detecting
arousals from sleep, in both non-REM and REM sleep in
patients suffering from Parkinson’s disease (PD). The proposed
algorithm uses features from EEG, EMG and the manual
sleep stage scoring as input to a feed-forward artificial neural
network (ANN). The performance of the algorithm has been
assessed using polysomnographic (PSG) recordings from a
total of 8 patients diagnosed with PD. The performance of
the algorithm was validated using the leave-one-out method
resulting in a sensitivity of 89.8 % and a positive predictive
value (PPV) of 88.8 %. This result is high compared to previous
presented arousal detection algorithms.

I. INTRODUCTION

Manual scoring of arousals in polysomnographic (PSG)

recordings is a time-consuming and tedious task. Further-

more the inter-score agreement between two or more sleep

specialists is highly varying, especially for patients with

sleep disorders [1], [2], [3]. Therefore several methods have

been proposed for automatic detection of arousals, in order

to make the arousal scoring time-saving and standardized.

According to the American Academy of Sleep Medicine

(AASM), arousals from sleep are defined as an abrupt shift

of electroencephalography (EEG) frequency that lasts at

least 3 seconds [4], [5]. Furthermore if the arousals are

from rapid-eye movement (REM) sleep, at least 1 second

of an increase in chin electromyography (EMG) must be

present. The scoring of arousals is thus independent of

the 30-seconds epochs considered in conventional sleep

scoring, and therefore the EEG and EMG signals have to

be analysed continuously for significant changes. The first

adaptive segmentation approach was suggested by [2] who

detected changes in EEG frequency and transient increase in

submental EMG to define arousals. From 11 PSG recordings,

the algorithm achieved a sensitivity of 88.1 % and a positive

predictive value (PPV) of 74.5 %.

A few other adaptive segmentation approaches have been

proposed [6], [7], [8], [9], [10] however none of these have

achieved a better sensitivity than [2] but an improved PPV

has been reported in a few studies.

The aim of this study was to design an arousal detection

algorithm capable of detecting arousals in both non-REM

and REM sleep for PD patients. The definition of arousals

is not dependent on a certain frequency content but simply

a frequency shift, and the detection of arousals should

therefore still be possible independent of specific frequency

and power changes in the EEG which has been detected in

EEG from PD patients.

II. METHOD

A. Subjects

Eight PD patients (age 59.8±8.8) were selected from the

patient database at the Danish Center for Sleep Medicine,

Department of Clinical Neurophysiology, Glostrup Univer-

sity Hospital, Denmark. Patients taking any anti-depressant

drug, sleep medicine or other medication known to affect

sleep were excluded from the study. Furthermore, subjects

with sleep apnea, bruxism, epilepsy, or other abnormalities

known to effect sleep recordings, were also excluded from

this study.

B. Data acquisition

All subjects underwent one night of PSG including six

leads of EEG (F3-A2, F4-A1, C3-A2, C4-A1, O1-A2,

O2-A1), surface EMG of the left and right anterior tib-

ialis muscle and the submental muscle, electrocardiogra-

phy (ECG) and vertical and horizontal electrooculography

(EOG). Impedances were kept below 10 kΩ, and all signals

were lowpass filtered and subsequently decimated to a joined

sampling frequency of 256 Hz. Subjects were instructed not

to consume any caffeinated or alcoholic drinks for at least 6

hours prior to the recordings. Sleep stages and arousals from

sleep were manually scored according to standard criteria [4],

[5].

C. Biomedical signal processing

The AASM manual for scoring of sleep and associated

events states that either the central or occipital EEG channels

should be used when scoring arousals [4]. Furthermore the

submental EMG channel should be used to score arousals

during REM sleep. Therefore, it was decided to use only

the two central (C3-A2, C4-A1) and two occipital (O1-A2,

O2-A1) EEG channels and the submental EMG channel.

All EEG signals were bandpass filtered with a 3 dB cut

off frequency between 0.3 and 35 Hz and the EMG signal

was bandpass filtered with a 3 dB cut off frequency between
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Fig. 1. Illustration of the biomedical signal processing performed by the arousal detection algorithm. Features are extracted from the EEG signals (12
features), the chin EMG signal (1 feature) and the manually scored hypnogram (1 feature) and given as input to an ANN. Output from the ANN is
interpreted as probabilities, so that all outputs above 0.45 are classified as an arousal being present. A postprocessing step combines arousals detected
within 10 seconds and removes arousals with a duration less than 3 seconds.

30 and 100 Hz. Both bandpass filters were implemented as

linear-phase equiripple FIR filters using the Parks-McClellan

algorithm [11]. Also a 50-Hz notch filter were applied for all

signals, which attenuated the 50 Hz component with more

than 100 dB.

1) Feature extraction: The frequency content of the EEG

signals was assessed by calculating the short time fourier

transform (STFT) of the EEG signals. By using STFT, the

Fast Fourier Transform (FFT) of small signal segments was

calculated to get the frequency spectrum for a specific time of

the recording. Before the FFT was calculated, each segment

was multiplied by a Hanning window to avoid large sidelobes

in the frequency spectrum.

The EEG signals were segmented into a past and current

time window defined simultaneously throughout the EEG

signals as illustrated in Fig. 2. The current window was

the one which should detect if an arousal was present, and

since the frequency shift should last at least 3 seconds, the

length of this window was set to 3 seconds. The length of

the past window was determined through trial and error to

10 seconds. The windows were moved 1 second at a time

along the EEG signals.

The two temporal windows represented two consecutive

segments of the EEG signals, which were transformed by

FFT to the frequency domain, and the power spectrum of

each segment was calculated by squaring the magnitude of

the spectra. The mean band power was measured in different

frequency bands as:

Pf1, f2 =
1

N

N−1

∑
n=0

|X( f1 +n∆ f )|2, (1)

where X is the filtered EEG signal segment transformed to
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Fig. 2. EEG signals are segmented in a current window of 3 seconds and
a past window of 10 seconds. The EMG signal is segmented in a current
window of 3 seconds and a past window of 30 seconds. The current and
past windows are demarcated by the red dotted lines and separated by the
green dotted line.

the frequency domain by FFT, ∆ f is the frequency resolution

and N is the number of samples in the fourier transformed

segment. The frequencies f1 and f2 denote the first and last

frequency in the frequency band, thus:

f1 +(N −1)∆ f = f2. (2)

The term 1/N in (1) makes the mean band power of the two

segments of different time lengths comparable.

The mean band power in the current segment, Pc
f1, f2

, was

divided with the mean band power of the past segment, P
p
f1, f2

,

to yield a measure of the shift in frequency content. For each

frequency band, a new signal was then obtained, describing
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the change in the frequency content of each band:

Pratio,band =
Pc

f1, f2

P
p
f1, f2

, (3)

where band refers to the frequency band f1 − f2. For each

frequency band, Pratio,band describes a feature vector for

each EEG signal. Through a feature selection process, a

combination of 10 features from the central EEG signal and

two features from the occipital EEG signal were chosen. For

the two central EEG signals, the features were the power

ratio given in (3) derived from the 4-7 Hz, 8-12 Hz 12-

14 Hz, 13-30 Hz and 8-30 Hz band. For the occipital EEG

signals, the power ratio features derived from the 8-12 Hz

band were used.

To make sure that outliers did not influence the classification

process, all EEG feature vectors with values above a certain

threshold were truncated. Through trial and error, this thresh-

old value was chosen to 10, thus:

Pratio,band(l) =

{

Pratio,band(l) if Pratio,band(l)< 10

10 if Pratio,band(l)> 10
,

l = 1,2, ...,L, (4)

where L is the length of the features, which corresponds to

the length of the PSG recording in seconds. Afterwards all

features were normalized with their maximum value to get

the same dynamic range for all patients.

The objective of the EMG feature was to detect amplitude

changes in the EMG signal. Therefore a comparison between

the amplitude of a past window of 30 seconds and a current

window of 3 seconds was performed, as illustrated in Fig.

2. Since muscle activity sometimes starts several seconds

before the onset of arousals, it was necessary to consider the

EMG signal several seconds prior to any possible arousal in

order to detect a change in amplitude.

To estimate the EMG amplitude, the root-mean-square

(RMS) indicator was calculated for each window as:

RMS(x) =

√

1

N

N

∑
i=1

x2(i), (5)

where x is the filtered EMG signal segment in the time

domain and N the number of samples in this segment. The

EMG signal was considered second by second as with the

EEG signals, measuring the RMS for both a signal segment

of 3 seconds and a signal segment of 30 seconds. Thus in

(5), N = fs ·∆t, where ∆t was either 3 seconds or 30 seconds.

The RMS value in the current segment, RMSc, was divided

with the RMS-value in the past segment, RMSp, to yield a

measure of the amplitude change of the EMG signal:

RMSc,p =
RMSc

RMSp
. (6)

The dynamic range of the EMG feature in (6) varied

from subject to subject. Therefore it was not possible to

determine a fixed threshold independent of the subjects.

Instead a threshold value was based on a percentile of the

EMG feature. Through trial and error, it was decided to

truncate all values above 1.5 times the 99th percentile:

RMSc,p(l) =

{

RMSc,p(l) if RMSc,p(x)< 1.5 · p99

1.5 · p99 if RMSc,p(x)> 1.5 · p99
,

l = 1,2, ...,L, (7)

where p99 is the 99th percentile of the EMG feature.

Since the definition of arousals is different in non-REM

and REM sleep stages, another feature had to distinguish

between wake, non-REM and REM. Both the EEG and

EMG signals were processed second by second, an therefore

a piecewise constant interpolation of the hypnogram was

performed to expand from the 30 seconds epochs to sleep

stages described second by second. This feature vector

consisted of 1 for wake stages, 0 for REM stages and -1

for non-REM stages and represented the last feature for the

arousal detection algorithm.

To summarize 14 features were used in total to describe

the frequency shift in EEG, the muscle activity in the chin

EMG and the sleep stages. These feature vectors were placed

as columns in an [L× 14] matrix, where L is the length of

the PSG recording in seconds. This is illustrated in Fig. 1.

2) Classification: All features were used as inputs to an

artificial neural network (ANN). This type of classifier was

chosen, since it has previously shown to perform well in

arousal classification [7]. The ANN from the DTU toolbox1

was chosen, which is a two layer feed-forward ANN with

a hyperbolic tangent function for the hidden layer and a

logistic sigmoidal function for the output layer.

The hidden layer was comprised of 9 neurons, since this

amount of neurons resulted in the best classification error.

The output was interpreted as probabilities and therefore

the output layer consisted of a single neuron. The proba-

bility threshold was 0.45, so that every output above this

probability was interpreted as an arousal being present. A

postprocessing step was added to combine arousals classified

in a certain proximity of each other. By trial and error a limit

of 10 seconds was chosen, so that if the output vector had

arousals closer than 10 seconds from each other, the arousals

were combined to one arousal. Detected arousals lasting less

than 3 seconds were removed.

III. RESULTS

In order to measure the performance of the algorithm,

the following variables were defined:

True positives (TP): Number of correct detected arou-

sals by the algorithm.

False positives (FP): Number of incorrect detected

arousals by the algorithm.

False negatives (FN): Number of arousals missed by

the algorithm.

A detected arousal was classified as correct detected,

if it overlapped with the manually scored arousals.

1htt p : //cogsys.imm.dtu.dk/toolbox/
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As the output of the classifier was treated as probabilities,

a threshold was chosen to satisfy both the sensitivity and the

PPV. The threshold resulting in the maximum F-measure was

chosen. The F-measure combines the sensitivity and PPV and

is defined as:

F = 2 ·
sensitivity ·PPV

sensitivity+PPV
(8)

The threshold resulting in the maximum F-measure was 0.45.

The algorithm was tested on the 8 PD patients using the

leave-one-out method. In table I the sensitivity and PPV are

shown for each PD patient, and the average sensitivity and

PPV are 89.8 % and 88.8 % respectively.

PD patient Sensitivity PPV [%]

1 82.9 87.7
2 86.3 92.6
3 93.9 93.9
4 87.5 87.5
5 91.7 97.5
6 90.2 74.8
7 89.7 86.7
8 96.5 87.4

TABLE I

PERFORMANCE OF THE ALGORITHM WHEN TESTING ON THE 8 PD

PATIENTS USING THE LEAVE-ONE-OUT METHOD.

IV. DISCUSSION

This paper describes a method for detection of arousals

both in non-REM and REM sleep, only using the EEG, EMG

and the manually scored hypnogram. In total 14 features

are extracted from these signals and used in an ANN to

classify arousals. The algorithm was tested on 8 PD patients

resulting in a sensitivity of 89.8 % and a PPV of 88.8 %.

This result is better than what has been presented for other

arousal detection algorithms to date and it is the first arousal

detection algorithm tested on PD patients.

The algorithm is not full-automatic due to the use of

the manual scored hypnogram. Therefore a more correct

term, would be to denote the algorithm as semi-automatic.

None of the previous developed arousal detection algorithms

detect the sleep stages automatically, however most of the

algorithms are still presented as being automatic. To develop

a full automatic arousal detection algorithm, it is necessary

also to automatically distinguish between wake, non-REM

and REM sleep. Several studies have already proposed

methods for the automatic detection of sleep stages [12],

[13], [14], but especially in patients with sleep disorders,

this has seemed to be a difficult task. Furthermore, if a

sleep stage algorithm manages to distinguish between non-

REM, REM and wake, it will still be necessary to manually

score the different non-REM stages to get the conventional

hypnogram. Therefore as long as no algorithm manages

to distinguish between all sleep stages, a manually scored

hypnogram will probably always be available.

Several previous proposed arousal detection algorithms

have not considered arousals during REM sleep appropri-

ately. Either they lack to define arousals with the constraint

on EMG activity in REM [10], they do not use the EMG-

channel [6] or they only look at the non-REM sleep stages

[8].

Compared to previous studies who have assessed the inter-

score variability among manual arousal scorings [3], [15], the

algorithm presented in this paper performs even better than

what could be expected for an automatic arousal detection

algorithm. Future work rely on validation using several data

sets of both diseased and healthy subjects and subjects of

various ages [16]. Furthermore data sets from other sleep

laboratories and scored by other sleep specialists would also

be advisable. This will both achieve a more reliable and

accurate assessment of the performance of ones algorithm,

and allow to compare different algorithms.
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