
  

  

Abstract—The intracranial pressure (ICP) monitoring is a 
common procedure in neuro-intensive care for pathologies such 
traumatic brain injuries or hemorrhages, but also for chronic 
ones as the Normal Pressure Hydrocephalus (NPH). The only 
available treatment for NPH is the surgical implantation of a 
shunt with the aim of routing cerebrospinal fluid (CSF) away 
from the brain to another part of the body. 

In this study, using the classification software WEKA, an 
intensive investigation of ICP signals has been conducted. In 
particular we studied 14 ICP recordings of different patients 
who underwent an infusion test, with the aim of investigating 
the presence of NPH through the ICP recording. More 
precisely, 20 morphological features are extracted from the ICP 
pulsed wave, the trend have been computed and, for each one, 9 
statistical functions determined. The 180 features have been 
selected and passed for the classification. The results obtained 
shows how, among the 14 patients, a number of 12 out of 14 
(85.7%) have been correctly classified, looking at just 3 
features. In particular 8 out of 9 not-NPH-affected patients 
were correctly identified (88.89%) while 4 out of 5 NPH-
affected patients were correctly identified (80%). 

I. INTRODUCTION 
HE intracranial pressure (ICP) monitoring is a common 
procedure in neuro-intensive care for pathologies such 
traumatic brain injuries or hemorrhages, but it is 

commonly employed also in neurosurgery to diagnose 
chronic pathologies.  

A small pressure transducer is inserted through the skull 
into the brain parenchyma or CSF filled cavities called 
ventricles to measure the CSF pressure. In some cases, ICP 
is obtained through a lumbar access to the intradural CSF 
inside the vertebral canal. ICP signal is obtained through the 
use of a catheter with a micro miniature silicon strain gauge 
type sensor mounted at one end.  

It is difficult to establish a universal “normal value” for 
ICP as it depends on age, body posture, and clinical 
conditions. In the horizontal position, the normal ICP in 
healthy adult subjects was reported to be within the range of 
7-15 mmHg [1]. The definition of raised ICP depends on the 
specific pathology: in hydrocephalus, a pressure above 15 
mmHg can be regarded as elevated. Following head injury, 
anything above 20 mmHg is abnormal and aggressive 
treatment usually starts above 25 mmHg. In most cases, ICP 
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varies also with the spending of time. 
Most of common widely used devices for ICP monitoring 
provide few information to the clinicians, such a simple 
“mean” ICP value obtained from the variations considered 
attributable to diastolic/systolic phases of CSF production 
inside the ventricles. Limiting the study of the ICP to the 
mean values, especially if during a short time window, 
heavily affects the diagnostic and therapeutic success. 

Normal Pressure Hydrocephalus (NPH) is an 
accumulation of cerebrospinal fluid that causes the ventricles 
in the brain to become enlarged, sometimes with little or no 
increase in intracranial pressure. In normal conditions, the 
CSF contained into the subarachnoid spaces and cerebral 
ventricles is produced and reabsorbed at constant rate, while 
NPH is caused by an altered CSF hydrodynamics. It is a 
typical elderly disease characterized by some or all of the 
following triad of symptoms: gait ataxia, urinary 
incontinence and short term memory disturbances. The 
majority of cases of NPH are idiopathic (related to  unknown 
causes). NPH can also be caused by head injury, 
subarachnoid hemorrhage, tumor or cysts, as well as 
subdural hematomas, meningitis and other brain infections 
[2]. 
The most common and usually the only available treatment 
for NPH is the surgical implantation of a shunt, a device that 
routes CSF away from the brain to another part of the body 
where it can be absorbed. The rate of success for shunting 
normal pressure hydrocephalus is quite variable; although 
the success rate for shunting is higher when proper 
diagnostic and treatment procedures are followed. 

II. NPH DIAGNOSIS 
Once NPH is suspected by a primary physician, specific 
tests are usually performed to confirm the diagnosis and 
assess the person’s candidacy for shunt treatment. The 
decision to perform a test may depend on the specific 
clinical situation and on the medical team. Different tests or 
examinations are available to investigate NPH presence:(1) 
Clinical exams to evaluate symptoms, (2) Brain images to 
detect enlarged ventricles (i.e. resonance imaging, MRI, and 
computerized tomography, CT), (3) CSF tests to predict 
shunt responsiveness and/or determine shunt pressure (i.e. 
Lumbar puncture, or spinal tap, Spinal fluid drainage), (4) 
the measurement of CSF outflow resistance, (5) Isotopic 
cisternography [3]. Anyway, even if numerous techniques 
are used to identify patients who are likely to have NPH, no 
definitive method exists to prove diagnosis. 
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Stratified Cross Validation: it trains the system with the 90% 
of the database, while the remaining 10% is used to test the 
classifier. The procedure is repeated 10 times using a 
different training and testing set. This ensures that the 
training files never take part to the testing set; so the second 
confusion matrix is more significant. The results, evaluated 
by the Stratified Cross Validation confusion matrix, are 
showed in Tab.1. 
It must be underlined that the best results are obtained 
through the SMO scheme for the complete features set and 
through the KStar scheme for the reduced (or selected) set of 
the 3 above mentioned selected features. 
Whereas it would appear that the complete set of features 
would improve the discrimination capabilities of a 
classification system, actually, by reducing the size of the 
classification vector, the system is provided with a more 
compact and more easily interpretable set of data. So the 
performance of the learning algorithm can be improved and 
above all the speed of the system increases because the 
system classifies a number of 3 features instead of 180. 
In fact, as it can be seen in Tab.2, looking at the SELECTED 
- KStar (Stratified Cross Validation) confusion matrix, 
among the 14 patients who underwent the infusion test, a 
number of 12 have been correctly classified. In particular 8 
out of 9 not-NPH-affected patients were correctly identified 
while 4 out of 5 NPH-affected patients were correctly 
identified. In Tab.2 are reported a summary of the achieved 
results expressed in percentage of correct classification, for 
each of the 8 exploited machine learning schemes. 

VI. CONCLUSION 
The automatic system for NPH identification developed 
must be intended as a valid, consistent, reliable and easy-
computing tool that might be used by the medical team in all 
those cases that involve brain damages or diseases. In fact, a 

deep analysis of intracranial pressure data, in terms of 
morphological features extracted by the method, radically 
helps the clinicians to make a diagnosis easier and more 
precise. It is plausible to suppose that enhancement to the 
automatic classification system can be made by improving 
the filtering steps and refining the optimal subpeaks 
selection algorithm. Thereby, most reliable results are 
expected by using a plentiful database, in order to apply 
more sophisticated learning classifiers.  
Further improvements on the reliability of the developed 
automatic system can be reached using multi-channel signals 
of intracranial pressure (ICP), arterial blood pressure (ABP) 
and electrocardiogram (ECG).  

REFERENCES 
[1] M. J. Albeck, S.E. Borgesen, F. Gjerris, et al., “Intracranial pressure 

and cerebrospinal fluid outflow conductance in healthy subjects”, J. 
Neurosurg., vol. 74, 1991, pp 597-600. 

[2] V. Vacca, ”Diagnosis and Treatment of Idiopathic Normal Pressure 
Hydrocephalus”, The Journal of neuroscience nursing, vol. 39, no2, 
pp. 107-111, 2007. 

[3] Rachel Fudge, “About normal pressure hydrocephalus, a book for 
adult and their families”, Hydrocephalus Association, San Francisco, 
CA, November 2002. 

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. 
Witten, “The WEKA Data Mining Software: An Update”, SIGKDD 
Explorations, Volume 11, Issue 1, 2009 

[5] A. Calisto, M. Galeano, A. Calisto, S. Serrano, B. Azzerboni, "A new 
approach for investigating idiopathic normal pressure hydrocephalus: 
filtering, features extraction and classification from continuous 
intracranial pressure recordings", submitted to IEEE Trans. Biomed. 
Eng. 

[6] H.Lei and V. Govindarajum, “Speeding up Multi-class SVM 
Evaluation by PCA and Feature Selection”, Feature Selection for 
Data Mining, 2005. 

[7] P. Langley and S. Sage, “Induction of selective bayesian classifiers”. 
Conference on Uncertainty in Artificial Intelligence, pp. 399–406, 
1994. 

[8] T. Vogt and E. Andre, “Comparing feature sets for acted and 
spontaneous speech in view of automatic emotion recognition”, 
ICME’05, pp. 474–477. 

[9] S. Casale, A. Russo, G. Scebba, S. Serrano, “Speech Emotion 
Classification using Machine Learning Algorithms”, IEEE 
International Conference on Semantic Computing, 2008 

 
 

Tab. 1 - The results, evaluated by the Stratified Cross Validation 
confusion matrix, 4 different learning machine schemes exploited. 
a stands for “not NPH affected patients”  
b stands for “NPH affected patients”  
A stands for “supposed (by the system) not NPH affected patients”  
B stands for “supposed (by the system) NPH affected patients”  
A great number of elements on the principal diagonal means a trust 
scheme. 

Tab. 2 - Summary of the achieved results expressed in percentage of correct 
classification, for each of the 8 exploited machine learning schemes 

NPH 
Affected 
Accuracy

Not NPH 
Affected 
Accuracy

TOTAL 
Accuracy

J48 55.56% 20.00% 37.78%

Kstar 100.00% 0.00% 50.00%

NaiveBayes 66.67% 60.00% 43.33%

SMO 88.89% 60.00% 74.44%

J48 66.67% 80.00% 73.33%

Kstar 88.89% 80.00% 84.44%

NaiveBayes 77.78% 80.00% 78.89%

SMO 88.89% 20.00% 54.44%
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