
  

  

Abstract—Outcome prediction in DeBakey Type III aortic 

dissections (AD) remains challenging.  Large variations in AD 

morphology, physiology and treatment exist. A patient-specific 

approach towards a detailed understanding of the distinct 

features of each single case might be needed to account for this 

variation. In particular, an improved characterization of 

hemodynamic parameters in addition to geometrical quantities 

may yield deeper insight into this complex disease. Advances in 

cardiovascular magnetic resonance imaging (CMR)  have 

resulted in pulse sequences that provide time-resolved 

information of blood velocities, aortic wall motion and, with the 

administration of exogenous intravenous contrast bolus, 

contrast passage timings.   

Here we provide a combined approach in a group of 10 AD 

patients using 2D phase contrast magnetic resonance imaging 

(2D pcMRI) and Time-resolved Angiography With Interleaved 

Stochastic Trajectories (TWIST) to quantify blood velocities, 

flow rates, maximum signal enhancement from exogenous 

contrast and time to maximum signal enhancement in the true 

lumen (TL) and false lumen (FL). The FL-TL dynamic 

pressure gradient was derived from 2D pcMRI velocity 

measurements. These hemodynamic parameters were 

correlated with dynamic parameters for the intra-arterial 

septum (IS) wall motion derived from 2D pcMRI.  

A strong positive correlation was found between  the TL-FL 

dynamic pressure gradient and maximum IS extension 

(R=0.76) as well as with maximum IS contraction (R=-0.51) 

Taking the ratio of maximum extension to maximum 

contraction, the correlation increased to R= 0.81. The ratio of 

TL to FL volumetric flow rate showed a high correlation with 

the difference in FL-TL  times to maximum enhancement 

(R=0.87) illustrating that higher flow in the TL will result in 

delayed contrast arrival in the FL and vice versa. Analogous, 

the TL to FL ratio of maximum enhancement correlated with 

the TL to FL ratio of the maximum volumetric flow rate 

(R=0.85).   

2D pcMRI and 4D MRA in combination with exogenous 

intravenous contrast bolus allows characterization of 

hemodynamics in DeBakey type III AD. High correlations 

between IS wall motion, TL and FL pressure differences, flows 

and times to maximum enhancement were found. An extension 

of our analysis to follow-up imaging examinations are 

warranted to establish the potential for hemodynamic 

parameters determined with CMR  as a marker for clinical 

outcome in longitudinal studies. 
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I. INTRODUCTION 

ortic dissections (AD) result from blood entering the 

intimal layer and splitting the aorta into a true lumen 

(TL) and a false lumen (FL). It is the commonest life-

threatening event involving the aorta affecting 5-10 million 

people per year [1]. Untreated, 50 % of all AD patients with 

involvement of the ascending aorta (DeBakey type I and II) 

die within 24 hours and 60 % of all patient with acute 

dissection of the descending aorta (DeBakey type III) die 

within one month. Even after treatment, only 10 % of 

patients with type I or II and  40 % of patients with type III 

will be alive after one year. Patients with chronic type III 

AD are at risk of FL rupture and 20 % of these will require 

surgical management [1]. One in five patients with a type III 

AD discharged after successful treatment will die within 3 

years [2]. Adverse hemodynamic conditions, leading to 

partial thrombosis together with occlusion of re-entry tears, 

are thought to increase FL lumen pressure eventually 

causing rupture. If conventional medical treatment of type 

III AD, which focuses on lowering the heart rate through 

administration of β-blockers, fails and organ malperfusion or 

lower limb ischemia occurs, surgical intervention is 

indicated, either through endovascular (TEVAR) stent graft 

placement across the entry tear thereby lowering inflow into 

the FL or by fenestration, in which the intra-arterial septum 

(IS) is ruptured effectively combining TL and FL. Type III 

AD exhibit a large variety in morphology, with either a 

straight or tortuous FL, one or multiple entry and re-entry 

tears, no, partial, or complete thrombosis of the FL. Further, 

a large variety in dynamic properties, such as IS mobility 

and TL or FL flow rates have recently been reported [3,4]. 

The most common used classification separates type III AD 

into acute if presenting less than 2 weeks after symptoms 

onset, or chronic, if presenting after 2 weeks of symptoms 

onset. Computed tomography (CT) is the most commonly 

used clinical imaging modality for type III AD, yielding a 

static picture that cannot display aortic wall motion or 

hemodynamic quantities. In contrast, dynamic 

cardiovascular magnetic resonance imaging (CMR), through 

judicious choice of pulse sequences,  provides AD geometry 

(3D magnetic resonance angiography, MRA), values for TL 

and FL blood velocities (phase contrast magnetic resonance 

imaging, pcMRI) and contrast passage times (through 
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each slice, TL and FL maximum enhancement (Imax, TL and 

Imax,FL) and time from bolus contrast administration to 

maximum enhancement (tmax, TL and tmax,FL) were determined 

by a simple search algorithm. Pseudo-color maps were 

created for each slice for both parameters. Imax and tmax were 

derived from these maps at a location corresponding to the 

slice position for the 2D pcMRI acquisition. 

III. RESULTS 

A.  IS Motion Parameters and Hemodynamic Parameters 

Values for IS wall motion parameters and for hemodynamic 

parameters are listed in table 1. Mean values for dmax (3.5 ± 

0.9 mm) and dmin (3.0 ± 2 mm) were comparable. Mean vTL 

was approximately a factor 4 larger then vFL (63 ± 16 cm/sec 

versus 18 ± 11 cm/sec); mean fTL was larger by a factor 5 

than mean fFL (59 ± 26 ml/sec versus 12 ± 22 ml/sec). In 

contrast, fmax,TL was only about a factor 2 larger than fmax,FL 

(238 ± 88 ml/sec versus 118 ± 72 ml/sec). Imax, TLand Imax,FL 

were comparable (672 ± 224 and 572 ± 182, repectively) 

indicating comparable contrast filling of TL and FL, albeit 

not necessarily at the same time as tmax,TL was on average 6 

seconds shorter than tmax,FL (39 ± 7 sec versus 45 ± 8 sec). 

 

B.  Correlation of TL-FL Dynamic Pressure Gradient with 

IS Wall Motion 

A strong positive correlation was found between  ∆P and 

dmax: R=0.76. A strong inverse correlation was observed 

between ∆P and dmin: -0.51 (figure 2).Taking the ratio 

dmax/dmin, the correlation increased to R= 0.81.  

 

C.  Correlation of TL-FL Dynamic Pressure Gradient with 

Hemodynamic Parameters 

A positive correlation between ∆P and fmax,TL-fmax,FL 

(R=0.45, figure 3) and a negative correlation between ∆P 

and  tmax,FL-tmax,TL were observed (R=-0.30, figure 3).  

 

D.  Additonal Correlations between Hemodynamic 

Parameters 

Strong correlations between the ratio fTL/fFL and the 

difference tmax,FL-tmax,TL (R=0.87) and the ratio fmax,TL/fmax,FL 

and the ratio Imax,TL/Imax,FL (R=0.85) were found. 

The remaining pair-wise correlations between the 

remaining hemodynamic parameters were weak (R<0.25) 

and are not discussed further.   

 

IV. DISCUSSION 

Towards a better understanding of hemodynamics and IS 

dynamics in type III AD, hemodynamic quantities and IS 

motion parameters were determined from 10 patients 

undergoing dynamic MRI examinations which included 2D 

pcMRI and 4D MRA. 

Applications of 4D MRA for imaging of various vascular 

beds have been previously reported [6-9]. Johnson et al. 

utilized an 4D MRA acquisition to develop an automated 

method of image analysis of the human aorta. With this 

method, cross-sectional areas along the whole thoracic aorta 

were obtained within 1% error compared to expert tracing 

[10]. In an in-vitro study for determining the optimal 

parameters for 4D MRA applied to renal perfusion imaging, 

errors in  aortic MRI signal intensities (compared to 

simulated curves created from a tracer kinetic model)  were 

in the order of 5 % for the sequence parameters used in the 

here described study [11]. 

In the first part of our analysis, the correlation between 

the TL-FL pressure gradient and IS motion parameters was 

investigated. IS maximal extension, maximal contraction 

and their ratio were found to correlate well with the 

dynamic TL-FL pressure gradient. This finding supports the 

hypothesis that IS motion in type III AD may be mainly 

determined by the force of systolic blood flow. Higher 

correlation for maximum extension than for maximum 

contraction (R=0.76 compared to R=-0.51) might be 

understood if considering that TL velocity is higher and 

hence the corresponding force exerted on the IS larger 

TABLE I 

HEMODYNAMIC PARAMETERS AND IS WALL MOTION PARAMETERS 

Case 1 2 3 4 5 6 7 8 9 10 

dmax ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

dmin 2.9 2.9 2.9 2.1 0.6 6.9 0.8 1.4 5.1 4.3 

tcorr ���� ��	� ���� ��
� ���� ���� �� ���� ��	� ����

vTL �
� ��� �
� ��� ��� ��� ��� �	� ��� 	��

vFL ��� ��� ��� ��� ���� ��� ��� ��� 	� ���

fTL ��� 	�� �	� �
� ��� ��� �
� ��	� ��� 	��

fFL ��� 
�� �� 
�	� ��� ��� 
�� ��� 
�� �	�

fmax,TL ��
� ���� ���� �	
� 
�� ���� ���� ���� ���� ����

fmax,FL 	�� ��� 
�� �	� �
�� ���� ���� ���� �	� ����

∆P ���� ���� ���� ����� ���� 
���� ���� ���� ���� ��
�

Imax TL �	�� ��
� ���� ����� ���� 	��� ���� ��
� ���� ����

Imax,FL ��	� ���� �
	� 		�� ��
� 	��� �
�� 	��� ���� 	
	�

tmax, TL ��� ��� ��� ��� �
� ��� ��� �	� �	� ���

tmax,FL ��� ��� ��� ��� �	� ��� ��� ��� ��� ���

dmax and dmin in mm, tcorr unitless, vTL and vFL in cm/sec, fTL, fFL, fmax,TL 

and fmax,FL in ml/sec, ∆P in mmHg, Imax,TL and Imax, FL in arbitrary 

units, tmax,TL and tmax,FL in seconds.�

         

 
Fig. 3.  Correlation plots a: Maximum TL-FL dynamic pressure difference 

(∆Pmax) versus TL-FL difference of maximum flow rate,  b: ∆Pmax versus TL-

FL difference of time to maximum enhancement, c: ratio of  TL to FL flow 

rate to TL-FL difference of time to maximum enhancement d: ratio of TL to 

FL maximum flow rate to ratio of TL to FL maximum enhancement. 
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during its extension than FL velocity and corresponding 

force during its contraction. For the latter, IS composition 

(collagen content, fiber content, thrombus) may play a larger 

role in determining IS motion thereby weakening the 

influence of the TL-FL pressure gradient on the extent of IS 

motion. 

In the second part of the analysis, relationships between 

hemodynamic quantities derived from the 2DpcMRI 

acquisition (i.e. blood flow velocities, volumetric flow rates 

and TL-FL dynamic pressure gradient) and from the 4D 

MRA acquisition (time to maximum enhancement, signal 

intensity for maximum enhancement) were investigated. 

Using ratios of amplitudes or differences of times to peak 

enabled a lesser dependence on the timing of the bolus 

acquisition. Largest correlations were found for  the 

difference in TL and FL flow rates versus TL-FL dynamic 

pressure gradient (R=0.45) and for the difference in FL and 

TL times to maximum enhancement and the TL-FL dynamic 

pressure gradient (R=-0.30, inverse relation). While 

intuitive, i.e. a higher TL flow rate might be expected if a 

higher dynamic TL dynamic pressure exists and 

consequently the time to maximum enhancement might be 

shorter, the found correlations are weak. Potentially, intra-

luminal pressure variations along the aorta might be 

weakening this correlation. These pressure variations were 

not assessed in the present analysis which included only one 

axial 2D pcMRI acquisition at the location of the diaphragm. 

Ratio of TL to FL volumetric flow rate showed a high 

correlation with the difference in FL-TL  times to maximum 

enhancement (R=0.87) illustrating that higher flow in the TL 

will result in delayed contrast arrival in the FL and vice 

versa. Analogous, the TL to FL ratio of maximum 

enhancement correlated with the TL to FL ratio of the 

maximum volumetric flow rate (R=0.85).   

In summary, the here presented results obtained with 4D 

MRA for characterizing the hemodynamics in DeBakey type 

III AD are encouraging. A study in a larger patient 

population is warranted to further investigate the relations 

between dynamic pressure differences, maximum volumetric 

flow rates and time to maximum signal intensities. 

Eventually, correlation of our results with follow-up 

examinations will show if the characterization of AD 

hemodynamics with 4D MRA may gain significance as a 

marker for clinical outcome. 

  

      

V. CONCLUSION 

From dynamic CMR examinations, TL and FL 

hemodynamics and IS motion were quantified. A strong 

correlation between the ratio of maximum IS extension to 

maximum IS contraction and the TL-FL dynamic pressure 

gradient were found.  Ratio of TL to FL maximum 

enhancement from exogenous intra-venous contrast 

administration correlated well with ratio of maximum TL to 

FL flow as did the difference of FL to TL time to maximum 

enhancement with the ratio of TL to FL mean flow.  
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