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Abstract—In this paper, we formulate the parallel magnetic
resonance imaging(pMRI) as a multichannel blind deconvolu-
tion problem with subsampling. First, the model allows formal
characterization of image solutions consistent with data obtained
by uniform subsampling of k-space. Second, the model allows
analysis of the minimum set of required calibration data. Third,
the filter bank formulation provides analysis of the sufficient
sizes of interpolation kernels in widely used reconstruction
techniques. Fourth, the model suggests principled development
of regularization terms to fight ambiguity and ill-conditioning;
specifically, subspace regularization is adapted from the blind
image super-resolution work of Sroubek et al. [11]. Finally,
characterization of the consistent set of image solutions leads to a
cautionary comment on L1 regularization for the peculiar class of
piece-wise constant images. Thus, it is proposed that the analysis
of the subsampled blind deconvolution task provides insight into
both the multiply determined nature of the pMRI task and
possible design strategies for sampling and reconstruction.

I. INTRODUCTION

Parallel Magnetic Resonance Imaging (pMRI) provides fast
imaging of soft tissues with the parallel use of phased-array
coils. The spatial diversity of coil sensitivity profiles serves
to augment phase encoded gradients for achieving spatial
localization; using fewer phase-encoding steps accelerates data
acquisition. Many image reconstruction algorithms has been
proposed, including SENSE [1], SMASH [2] and GRAPPA
[3]. SENSE unfolds spatial aliasing in the image domain,
while SMASH is a k-space method that estimates the non-
acquired k-space points from the acquired ones. Each of
these methods assume that the coil sensitivity information is
available; however, coil sensitivities are generally unknown
and must be estimated. To estimate them, autocalibration
methods have been proposed, such as AUTO-SMASH [4] and
GRAPPA, where extra central k-space lines are acquired.

Interpreted in k-space, each channel provides sub-Nyquist
samples of the convolution of the unknown image with a
coil sensitivity. If the sensitivities are assumed to be perfectly
known, then the pMRI problem can be modeled as a filter-bank
problem, as described in [8] and [9], and several methods given
in digital communication literature (e.g. [10]) can be applied
to find perfect reconstruction filters.

In the case of unknown coil sensitivities, the pMRI problem
can be fundamentally modeled as a blind multi-channel decon-
volution (BMD) problem with sub-sampling. Related work in
optical imaging considers similar challenges under the name
of blind super-resolution [11]; and, without subsampling the
multi-channel deconvolution has been explored in wireless
communications. The EVAM [5] subspace technique is a well-
known BMD concept that has been applied to the pMRI

problem [6], albeit with no subsampling. Similarly [7] also
invoked EVAM results for the estimation of coil sensitivities
when autocalibration lines provide a reference image.

In this paper, we first characterize the solutions consistent
with the k-space data, revealing the multiply determined nature
of the task. We assume that both the sensitivities and the
image are deterministic but unknown, and that k-space data
are uniformly downsampled in the phase encoding direction. In
addition, the smoothness of coil sensitivities in the image do-
main is exploited by modeling their k-space representations as
having small support (FIR filters). A polyphase decomposition
is used to describe the non-uniqueness of images consistent
with all data in the ideally noiseless case. Knowledge of the
set of all solutions motivates selection of regularization terms
to augment the non-convex least-square data fitting, thereby
combating both local minima and non-unique global minima.

II. PROBLEM FORMULATION

In pMRI, the continuous-parameter k-space signal is simul-
taneously acquired by K coils

gi(k) =

∫

FOV

ρ(r)ci(r)e
j2πkrdr, (1)

where r is the 3D spatial position, ρ(r) is the unknown spin
magnetization of the object to be imaged, ci(r) denotes the ith
coil sensitivity, and gi(k) is the k-space data for i = 1, ..., K.
Here, FOV refers to the field of view. Eq. 1 can be written
as the convolution of Fourier transform of spin magnetization
f(k) with the Fourier transform of coil sensitivities si(k).

gi(k) =

∞
∫

−∞

f(ν)si(k − ν)dν. (2)

The imaged object has finite spatial support, so the convo-
lution result in Eq. 2 must formally have an infinite support.
Practically, we truncate this support to capture any desired
arbitrarily large fraction of the energy. For simplicity, we
proceed below in two spatial dimensions, r = (x, y) and
sample at locations (kx, ky) = (m∇kx, n∇kx). Then, we
denote the Nyquist-sampled version of Eq. 2 as

gi(m, n) = si(m, n) ∗ f(m, n), (3)

where ∗ is the linear convolution operation. Next, we sub-
sample by rate R in the phase-encoding direction, kx. Let D

denote this uniform subsampling in the kx index.

gi = D(si ∗ f). (4)
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Coil sensitivities are widely reported as smoothly varying
spatial functions; therefore, we model the corresponding k-
space sensitivities as FIR filters, meaning that si is non-zero
only at low spatial frequencies. Denoting the these FIR models
as hi, then they may be written as

si(m, n) =

dM/2e−1
∑

u=−bM/2c

dN/2e−1
∑

v=−bN/2c

ci(u, v)ej2π( mu

M
+ nv

N
), (5)

hi = si(−b
mh

2
c : d

mh

2
e − 1,−b

nh

2
c : d

nh

2
e − 1),

where b.c and d.e refer to the floor and ceiling operations on
real numbers. Here, each coil sensitivity function is modeled
by mh × nh non-zero low-pass k-space samples. Because
convolution is a linear operation, we can write Eq. 4 in matrix
form by vectorizing f(m, n) into a single MN -by-1 vector

gi = DChi
f, i = 1, ..., K. (6)

Each Chi
, i = 1, ..., K is a 2D convolution matrix having a

Toeplitz-block-Toeplitz (TBT) structure. The size of each Chi

matrix is ((mh + M − 1)(nh + N − 1), MN).
Thus, we have a subsampled blind multi-channel deconvolu-

tion signal model, because both the image and coil sensitivities
are unknown. Owing to the subsampling, the Chi

matrices are
not convolutions; consequently, we put Eq. 6 into polyphase
decomposition, following e.g. [11], to analyze solutions. In
brief, polyphase representation allows the decimated output to
be written as the sum of convolutions with decimated versions
of the input. The pth polyphase component of gi is obtained
by taking every Rth sample starting from p. That is,

g
p
i (m, n) = gi(mR + p, n), p = 0, ..., R − 1,

and similarly for the filters, hi. Thus, in polyphase form,
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, (7)

where C
j,k
hi

is the convolution matrix of h
j−k
i . Thus, each

coil’s downsampled k-space data can be written in k-space as
the sum of filtered versions of the downsampled image,

g0
i =

R−1
∑

p=0

fp ∗ h
−p
i . (8)

The downsampled coil data are the first polyphase com-
ponent of the fully-sampled k-space. This polyphase decom-
position results in the multiple-input, multiple-output (MIMO)
convolution model depicted in Fig. (1) for subsampling R = 3
and K = 4 coils. Each solid line into a summation represents
a polyphase filter component, h

−p
i , for ith coil and pth

polyphase component.
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Fig. 1. A MIMO interpretation arises from polyphase decomposition of
the pMRI signal model; the representation is illustrated here for subsampling
R = 3 and K = 4 coils.

III. SOLUTIONS ARE NOT UNIQUE

Using Eq. 7, we explore the set of all solutions that are
consistent with the downsampled, multi-channel k-space data.
The multiply determined nature of the image recovery task
then is used to motivate a regularized inversion strategy.

From Eq. 7 we can immediately observe that any image
consistent with the decimated k-space data is accompanied
by an R-dimensional space of solutions. Specifically, let f

and {hi}, i = 1, ..., K, solve Eq. 4. Then we can choose R

arbitrary non-zero complex scalars α = {α1, ..., αR} and scale
each polyphase component to obtain another solution f ′ for
the image and h′ for coil sensitivities:

f ′ =

R−1
∑

p=0

αpf
p, h′

i =

R−1
∑

p=0

1

αp
h

p
i . (9)

This is evident in Fig. (1) in that any scale factor can be incor-
porated either in the unknown input, or in the unknown filters
that operate on that input. Further, from the downsampled
k-space measurements, y0

i , the ordering of the R polyphase
components of f is ambiguous. Thus, any of R factorial
permutations of the polyphase components is consistent with
the observed data.

Proposition 1. Suppose that f is any solution to Eq. 4. Then,
there exists an infinite number of solutions including

R−1
∑

p=0

αpf
Π(p),

where αp is any non-zero complex scalar, p = 0, · · · , R − 1
and Π is any permutation on the indices {0, · · · , R − 1}.

Moreover, additional solutions are given by adopting R

equal and opposite shifts in the polyphase components of
the image and coil sensitivities. Thus, even in the noiseless
setting, any effort to uniquely recover an image solely from
the k-space samples is futile due to the ambiguities. Additional
restrictions, based on physical characteristics of the true image
or true coil sensitivities, are required. This holds for any
R ≥ 2, regardless of the number of coils, K.

To illustrate the ill-posed nature of pMRI from uniform
downsampling, Fig. 2 displays three images that are consistent
with k-space data; the example is computed for M = N = 64,
K = 6, and R = 2. Fig. 2b is obtained from scaled versions
of polyphase components where α1 = 0.5 and α2 = 1.5,
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and Fig. 2c shows the resulting image where the polyphase
components are permuted.

a)  original b) scaling c)  permutation

Fig. 2. Illustration of the ill-posedness of pMRI from uniform downsampling.
Panels (a-c) each provide a data-matching image for sub-sampled k-space data
with downsampling R = 2 and K = 6 coils.

In addition, the size of the solution set can grow if f is not
uniquely determined for a known set of coil sensitivities. The
next proposition provides necessary and sufficient conditions
for the linear equations in Eq. 7 to have rank MN for fixed
hi, and hence to yield unique f for known sensitivities.

Proposition 2. The linear equations in Eq. 7 have full column
rank only if K ≥ R and mh ≥ R. The equations are full rank
if and only if K ≥ R and all R-by-R minors of the K-by-R
polynomial matrix of sensitivity polyphase components have
non-zero determinant [10].

Similarly, we can characterize uniqueness of coil sensitivi-
ties for a known image. By the commutativity of convolution,
Eq. 6 can be written as

gi = DCf hi, i = 1, ..., K, (10)

where Cf is convolution matrix constructed using the known
image, f . We again use a polyphase decomposition. Stacking
data from polyphase components of all K coils gives

gP = (I ⊗ C0
f )hP , (11)

where ⊗ is Kronecker product operation and I is an identity
matrix. The size of C0

f is (dmh+M−1
R e(nh + N − 1), mhnh).

Proposition 3. For a known image, the linear equations in
Eq. 11 can have full column rank, and hence give unique coil
sensitivities, only if M ≥ R and dmh+M−1

R e(nh + N − 1) ≥
mhnh.

The second inequality in Prop. 3 merely states that rows
are no fewer than the columns; a sufficient condition is N ≥
mhnh

d M

R
e

.

Definition 1. If a property of a vector v ∈ R
n fails to hold

only on a closed set of zero measure that is nowhere dense in
R

n , then the property is said to hold for generic v.

Remark 1. Under the size conditions in Propositions 2 and
3, Equations 7 and 11 are full rank for generic h and f .

Propositions 1-3 exemplify insights found by casting the
pMRI problem in the filter bank framework. In addition,
existing results from the MIMO systems literature provide
formal results on sufficient sizes of equalization kernels and
interpolation kernels [10]. Further, the framework allows for-
mal proof that R − 1 calibration lines are generically both
necessary and sufficient to eliminate, in the noiseless case, all
image ambiguity due to subsampling. Next, we use the filter
bank framework to suggest a regularization term.

IV. SUBSPACE CONSTRAINT ON COIL SENSITIVITIES

In this section, we provide one regularization term that
restricts the unknown filters hi to a low-dimensional subspace.
Our development is motivated by the EVAM principle (e.g.,
[5], [7]) and follows the treatment for image subsampling
given by Sroubek et al. [11]. Upon decimation, we have only
the zeroth polyphase component of the output, g0

i . We seek a
bank of nullifying filters

K
∑

i=1

(g0
i ∗ ηi) =

K
∑

i=1

(G0
i ηi) = Gη = 0, (12)

where G0
i is a convolution matrix of g0

i . Thus, the nullifying
filter vector η lies in the null space of G = FH [11] where

H =
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, (13)

and F is the convolution matrix of f . Then, if F has full rank,
the null-spaces of G and H are equal. Therefore, the nullifying
filters can also be used to nullify the unknown filters vector
h for generic f . From (noiseless) data, we can construct G
and the projection N onto the null-space of G, yielding the
following requirement on the unknown filters:

Nh = 0. (14)

Modifying the argument in [11] for our subsampling by R

in the encoding dimension, we learn that the dimension of
the null-space of G is generically R2. Hence, although the
projection N does not define a one-dimensional subspace con-
taining the filters, is does provide a low-dimensional subspace.
Penalizing distance of a conjectured h from this subspace can
therefore provide a useful regularization term [11] to augment
a norm on data mismatch.

V. OPTIMIZATION PROBLEM

Common practice is to augment k-space data with ad-
ditional calibration lines, and interpolate unknown k-space
data after solving a regularized least-squares problem for the
interpolation kernels. Here, we illustrate use of the proposed
regularization by directly solving for the unknown image; the
unknown coil sensitivities as computed as a byproduct. Gener-
ally, calibration lines would be also used, and the unknown coil
sensitivities require fewer unknowns than interpolation filters.
In this short paper, however, we use a computed example
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without calibration lines to also provide a cautionary example
regarding L1 regularization. Specifically, it can be shown that
for a noiseless piece-wise constant phantom with few jumps,
the ambiguous solutions characterized in Proposition 1 all
have total variation (TV) norm greater than or equal to the
true phantom. Consider image reconstruction via the nonlinear,
non-convex optimization problem

min
f,h

K
∑

i=1

‖gi − DChi
f‖2

2

+ β1‖Nh‖2
2 + β2TV (f) + β3TV (h). (15)

The initial term in Eq. 15 is a data fidelity term; the first
regularization term exploits the low-dimensional filter sub-
space sketched in Section IV. A TV norm is used as the
second regularization term to exploit piecewise smoothness of
an image while preserving edges (e.g., [13]–[15]). Likewise,
the third regularization term exploits smoothness in the coil
sensitivities. The TV norm is defined as,

TV (f) =
∑

√

|∇xF(f)|2 + |∇yF(f)|2,

where F represents Fourier Transform operator which is used
to pass to image domain.

For the minimization of this cost function, we simply used
an Alternating Minimization (AM). In an AM method, as
one variable (image or coils) is kept fixed, the minimization
is computed with respect to other variable. In this case, the
energy function takes a quadratic form with fixed f or h.
Therefore, a descent algorithm, such as conjugate gradients,
can be used to estimate the unknowns. In our simulations, we
used an open-source TV minimization code [17].

For simulation, a 64-by-64 Shepp-Logan phantom [16]
is used for K = 6 channels. To compute simulated coil
sensitivities, the Biot-Savart law is applied for FOV of 40 cm
in each dimension, a coil radius of 5 cm, and 20cm distance
from the center of FOV to the coils. From Nyquist rate k-
space sampling, the encode direction was downsampled by
a factor of R = 2. To model k-space sensitivity functions,
the size of each FIR filter was chosen as mh = nh = 9. The
regularization coefficients are chosen as β1 = 1, β2 = 6×10−5

and β3 = 8×10−3. Fig. 3 shows the simulation results. As it is

 a) original b) no regularization  c) proposed

Fig. 3. Experiment results for 6-channel simulated data. (a) original image,
(b) reconstructed image with no regularization, (c) reconstructed image with
regularization

seen in Fig. 3b, if no regularization term is used, then aliasing

and weighting error are strongly evident in the reconstructed
image.

VI. CONCLUSION

We propose that MIMO filter banks provide a valuable
viewpoint for the formal analysis of pMRI. The analysis
provides necessary conditions for successful image recovery,
yields results on sizes of interpolation filters, informs the
minimum number of required calibration lines, and reveals
a regularization term apparently new to the pMRI applica-
tion. The algebraic analysis for uniform subsampling may be
extensible to arbitrary k-space sampling patterns. We believe
that the filter bank formulation not only illuminates current
practice of k-space interpolation for pMRI, but points to the
more parsimonious approach of direct equalization to estimate
a single k-space image.
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