
  

  

Abstract—Deposition of polymeric and biocompatible 
nanolayers on the solid-state substrates is done using a simple 
vacuum chamber. The chemical characteristics of the deposited 
nanolayer are analyzed using Fourier transform infrared 
spectroscopy and X-ray photoelectron spectroscopy. The 
surface morphology of the nanolayers is analyzed using contact 
angle goniometer and scanning electron microscopy. The 
coated nanolayers show excellent stability in different chemical 
surroundings including the physiological pH therefore making 
it applicable in coating 3D MEMS devices and body implants 
which need medicated coating.  A micropore is coated with this 
approach and results depict uniform coating of the structure. 

I. INTRODUCTION 
ANOTEXTURED fluorinated polymer surfaces play 
important roles in barrier property of materials, 

membranes, sensors and medical implants.  These help in 
obtaining  low critical surface tensions causing hydrophilic 
and hydrophobic layers to bead up on exposure [1, 2]. 
Methods commonly used to deposit fluorinated polymers 
onto a surface include plasma polymerization, 
biomineralization, spin coating, chemical absorption, 
chemical vapor deposition (CVD) and self assembled 
monolayer (SAM) formation [3-5].  These methods provide 
good surface deposition but little control of the polymer 
surface properties and conformality on uneven surfaces [6, 
7]. Film conformality can be achieved by growing the 
fluorinated films using plasma polymerization and CVD but, 
these require specialized equipment, trained users and are 
cost prohibitive at mass scales [8-10].  

This paper presents a facile coating process using a simple 
vacuum chamber to deposit fluorinated organic nanolayers. 
The chemicals used for the layer formation were 3-
Aminopropyltrimethoxysilane (APTMS) and 1H,1H,2H,2H-
Perfluorooctyl-trichlorosilane (PFTS). The organic 
nanolayers obtained by the reaction of the two non-toxic 
chemicals were characterized for chemical and physical 
stability [11-13].  It was seen that the film was capable of 
surviving various chemical surroundings. These nanolayers 
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were also used to coat a 3D MEMS structure to study 
coverage performance in coating such devices. A micropore 
was coated which showed the presence of the coating in the 
inner periphery of the pore and angled walls of the cavity. 

II. METHODS AND MATERIALS 

A. Materials Used 
Two polymers were used in the experiments; APTMS and 

PFTS.  APTMS is known to be hydrophilic while PFTS is 
hydrophobic. These chemicals were used as received 
(Sigma-Aldrich, St. Louis, MO, USA).  Silicon wafers, with 
(100) orientation and ~550 µm thickness, were used as the 
substrates to deposit the polymer nanolayers for 
characterization.  The micropores were made in the silicon 
wafers with same orientation but these wafers were ~375 µm 
thick.  The process of micropore fabrication was adapted 
from the nanopore fabrication as reported before [14].  
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Fig.1. Thicknesses of nanolayers deposited on five samples at reaction 
times of 20, 30, 40, 50 and 60 mins.  The thicknesses are measured using 
surface profilometer.  Data is average of readings for each sample measured 
at 5 different locations. 

 

B. Nanolayer Deposition 
The nanolayer deposition was performed using a simple 

vacuum chamber where the two monomers, APTMS and 
PFTS, were placed inside the vacuum chamber.  These 
monomers were allowed to react in vapor phase under 
controlled vacuum of 22-25 mmHg. A silicon wafer chip of 
size 0.5 cmx0.5 cm was placed in the chamber along with 
the monomers which acted as a solid substrate for the 
nanolayer deposition.  When the two monomers reacted, 
they formed a thin film coating on the surface of the silicon 
wafer chip.  Fig 1 illustrates the thickness graph based on the 
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time of deposition of the film. Fig 2 shows the SEM 
micrographs of the coating. During the SEM imaging, the 
samples did not require conductive coating.  

The surface morphology and the thickness of the film 
could be controlled by three main parameters: ratio of 
concentration of the monomers, reaction time and vacuum 
inside the chamber.  The volumetric ratios between APTMS 
and PFTS ranging between 2:1–3:1 and vacuum in the range 
of 22 – 25 mmHg, the deposited nanolayers depicted porous 
texture with pore sizes ranging between 100-500 nm [1].   
 

 
 

 
Fig. 2 (a) and (b) are the SEM micrographs captured at different 
magnifications, showing the surface morphology of the coating.  The nano-
texture of the coating is evident. 
 

C. Characterization of the Nanolayers 
The chemical and physical characterization of the nanolayer 
was performed using Fourier transform infrared 
spectroscopy (FTIR), X-ray photoelectron spectroscopy 
(XPS), Scanning electron microscope (SEM) imaging and 
contact angle goniometer.  Different ratios of APTMS:PFTS 
were used to make the coatings.  From the contact angle 
measurements, the surface energies of the nanolayers were 
calculated which showed very low values [15].  

The biostability of the nanolayer was tested by immersing 
the coated silicon substrate into different pH solutions 
including deionized (DI) water. Five different silicon chips 
were coated with 2.5:1 ratio of APTMS and PFTS for 50 
mins at a vacuum of 22 mmHg.  These chips were immersed 
in solutions with pH values of 2, 4, 7 and 10. 

The surface morphology of the coating was studied using 
contact angle goniometer and SEM before and after 
exposure to the pH solutions.  When the surface was washed 
using DI water, there was no change in morphology and 
surface energy but when it was left in DI water for 24 hours, 
there was a slight increase in the surface energy.  When the 
samples were immersed in different pH solutions for 15 
hours, the coating was stable but the strength of the coating 
varied.  For the chip immersed in pH 2 solution, it was found 
to have more surface energy for the coating, making it more 
hydrophilic and in addition, the nanolayer lost its continuity. 
For the samples which were dipped in pH 4 and pH 7, 
similar results were obtained where the nanolayer was stable 
and its surface energy did not change.  The sample which 
was dipped in pH 10 showed results very similar to those for 
chip dipped in solution at pH 2. 

D. Coating of 3D Structures 
A conformal coating of organic nanolayers is a much 

sought-after property, which has potential applications in 
medicated implants, organic devices, surfaces of military 
assets, etc.  As a proof of the power of the presented 
approach, a micropore structure was coated.  MEMS 
devices, used as body implants or substrate carriers for 
controlled drug delivery, need medicated coatings that can 
be done with this approach.  The morphology of the coating 
on angled, circular and uneven surfaces of the solid-state 
micropore was studied. The 2.5:1 ratio of combination of 
APTMS and PFTS was used for micropore coating at a 
controlled vacuum of 22 mmHg with a deposition time of 40 
mins. Fig 3 shows the image of the coated micropore 
stricture.  
 

 
Fig. 3 SEM micrograph of a micropore coated with polymer nanolayer.  

(a) 

(b) 
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III. RESULTS AND DISCUSSION 
Table 1 shows the calculated surface energy values.  The 

plain SiO2 surface energy calculations were in close 
agreement to reported free energy of interaction between 
SiO2 and water [16].  The reduction in the surface energy 
depicted increased hydrophobicity of the surface.  Such low 
energy and highly hydrophobic surfaces can enhance protein 
adsorption and better interfaces with biological 
environments [1]. 

 
TABLE 1 

SURFACE ENERGY MEASUREMENTS 

Sample Ratio of APTMS:PFTS Average Surface Energy (mJ/m2) 

1 No Coating 63.721 

2 2.5 : 1 5.102 

3 1 : 2.5 10.563 

4 1 : 1 9.711 

 
The FTIR results showed remarkable differences between 

samples made with 2:1, 1:1 and 1:2 ratios of APTMS and 
PFTS. For sample with 2:1 ratio of APTMS and PFTS 
(Table 2), a broad stretching in the range of 2500–3200 cm-1 
was observed which indicated the presence of O-H and C-H 
bonds. The –C=O bonds along with Si-O-Si were also 
observed with this concentration. Halogen peaks indicated 
the presence of fluorine which originated from PFTS. These 
groups can have high protein/cell adsorption due to their 
inertness and thermal resistance. Sample with 1:1 ratio of 
APTMS and PFTS showed similar results but the spectra of 
sample with 1:2 ratio of APTMS and PFTS showed the 
presence of halogens and C-H bonds, indicating the 
dominance of PFTS upon APTMS.  

 
TABLE 2 

FTIR PEAK DATA FOR NANOLAYER FORMED IN 2:1 RATIO OF 
APTMS:PFTS 

Sample 
# 

O-H and C-H 
bonds (cm-1) 

-C=O 
(cm-1) 

Si-O-Si 
(cm-1) 

Halogen  
Si-C/C-Cl  

(cm-1)  

1 2630-3630 1635 1139-1010 749, 688 

2 2645-3211 1701 1135-1006 670, 641 

3 2649-3335 1652 1135-1005 782, 650 

4 2573-3202 1506 1137-1013 755, 698 

 
Presence of C, O, F, Si and Cl was seen in the XPS 

analysis (Fig. 4). The presence of C and O peaks in the areas 
of 280 eV and 520 eV, respectively, confirmed the film to be 

organic.  These peaks would have stemmed from the C-F 
bonds of PFTS indicating high percentage of fluorine. 

 

 
Fig. 4: Survey spectrum of the XPS analysis showing the peaks obtained 
due to the presence of Silicon, Chlorine, Carbon, Oxygen and Fluorine.  
 

Controlling the morphology and conformality coverage of 
the polymer film are the critical factor which determine the 
feasibility of coating films in many biomedical MEMS 
devices. The thickness of the film was controlled by the 
concentration and the reaction time. Based on the data of 
Figs. 1 and 2, the sample with 2.5:1 concentration of 
APTMS and PFTS after a 60 mins deposition showed thick 
porous surface morphology.  Based on the results obtained 
from characterization, the fluorinated nanolayers show their 
strong potential to coat devices and surfaces for wide 
ranging applications.  

IV. CONCLUSION 
This paper demonstrates the formation of a nanolayered 

organic polymer coating using a simple vacuum chamber 
instead of specialized equipment and need for trained users. 
The stability and the chemical composition of the nano film 
in different pH solutions indicate that the film can survive in 
strong chemical surroundings including the body pH. 
Though the control of the pore size of the film is still under 
study, our process of making low surface energy fluorinated 
polymer films can be used in many applications. .  
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