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Abstract— This paper considers the achievable reduction in
peak voltage across two driving terminals of an RC circuit when
delivering charge using a stepped current waveform, comprising
a chosen number of steps of equal duration, compared with
using a constant current over the total duration. This work has
application to the design of neurostimulators giving reduced
peak electrode voltage when delivering a given electric charge
over a given time duration. Exact solutions for the greatest
possible peak voltage reduction using two and three steps are
given. Furthermore, it is shown that the achievable peak voltage
reduction, for any given number of steps is identical for simple
series RC circuits and parallel RC circuits, for appropriate
different values of RC. It is conjectured that the maximum peak
voltage reduction cannot be improved using a more complicated
RC circuit.

I. INTRODUCTION

Medical devices such as retinal prostheses, for a recent
example see [1] and cochlear implants providing electric
stimulation of nerves generally use charge-balanced rectan-
gular biphasic current pulses for neural stimulation. Such
pulses comprise a constant current stimulating cathodic (neg-
ative) phase followed by an interphase gap and a constant
current charge-balancing anodic (positive) phase, with the
stimulation intensity often considered to correspond with the
amount of charge in the stimulation phase.

Recent work [2], [3] has proposed reducing the peak
electrode voltage by using regularly sampled stepped current
signals for the stimulation phase. The current steps are
calculated to minimize the peak electrode voltage while
delivering a specified charge over a given number of time
steps. Reducing the peak electrode voltage can reduce power
consumption, reduce stimulator voltage compliance require-
ments, and allow more charge delivery without undesirable
products forming at the electrodes. The technique is illus-
trated in Fig. 1 for the simplest case of two current steps.
Dividing the total duration into a larger number of steps gives
more voltage reduction. For convenience, the stimulation
phase is shown as positive in this work. An RC circuit [4] in
Fig. 2a was used to model the voltage ∼ current relationship
between a pair of electrodes in tissue. The circuit model
shown in Fig. 2b has been used [5] in the design of a power-
efficient neurostimulator.
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Results based on simulation [2] using the RC circuit in
Fig. 2a as a model for the electrode-tissue interface, and on
in vitro saline and in vivo tests [3] suggest a peak voltage
reduction of 10−20% can be achieved through the approach
in that work. This paper tries to analyze the amount of peak
voltage reduction that is possible with any RC circuit and to
characterize the circuit which gives the best reduction.

The work clarifies the relation between the maximum
achievable peak voltage reduction and the number of current
steps, the time constants of RC circuits and the sampling
interval. For brevity, many results are given without proof.

II. PROBLEM FORMULATION

A. Notation

Voltages and currents which are functions of time t are
denoted by lower case letters such as v(t). Samples of v(t)
taken at time intervals t = kTs where k = 0, 1, 2, . . . are
denoted vk, shorthand for v(kTs). The z-transform of a
sequence h = {hk}∞k=0 is denoted ĥ(z) and is given by

ĥ(z) =

∞∑
k=0

hkz
−k. (1)

With this convention, a stable transfer function has all its
poles at values of z : |z| < 1. Also the symbol z−1 denotes
the unit delay. The polynomial comprising the first n terms
of ĥ(z) is denoted by ĥ[n](z) and is given by

ĥ[n](z) =

n−1∑
k=0

hkz
−k. (2)

B. Stepped Stimulation Current Waveform Design

This subsection, based on [2], [3] briefly describes how to
obtain the piecewise constant stimulating current which min-
imizes the peak sampled electrode voltage, given a model of
the electrode-tissue interface. As in [2], [3], the stimulation
current phase of duration T is parametrized to comprise n
steps, each of duration Ts = T/n as follows

i(t) =

 0; t ≤ 0,
ik; kTs < t ≤ (k + 1)Ts; k = 0, 1, ..., n− 1,
0; t > nTs.

(3)
and is represented by a polynomial ı̂(z) =

∑n−1
k=0 ikz

−k. The
charge Q of the stimulation phase is incorporated by setting

n−1∑
k=0

ik =
Q

Ts
. (4)
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Fig. 1: Simulated voltage and current waveforms for a
constant current stimulation phase (dashed lines) and for an
optimal two-step descending staircase current (solid lines)
giving reduction of the peak voltage from V0 to Vopt, while
delivering identical charge over the same total duration.
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Fig. 2: RC circuits arising in this work; a: series-parallel
circuit; b: series circuit; c: parallel circuit.

The impedance of the electrode-tissue interface is mod-
elled by a transfer function z−1ĥ(z) = z−1

∑∞
k=0 hkz

−k

where hk is the electrode voltage at time t = (k + 1)Ts in
response to a unit step current applied over one sample time
0 < t ≤ Ts. Then the sampled electrode voltage in response
to a current (3) is v̂(z) =

∑∞
k=0 vkz

−k where

v̂(z) = z−1ĥ(z)̂ı(z). (5)

Given n, ĥ[n](z) and Q, the design of ı̂(z) can be
formulated as a linear program and solved numerically.
Alternatively, providing the coefficients of ĥ(z) satisfy a
monotonicity condition,

h0 > h1 ≥ · · · ≥ hn−1 ≥ hn ≥ · · · ≥ 0, (6)
hn−1 > 0, (7)

then the peak sampled voltage is minimized by choosing
the current to satisfy (4) and to give v1 = v2 = · · · = vn.
We say ĥ(z) ∈ HMon if and only if (6) and (7) hold.

It is useful to introduce signal x̂(z) given by

x̂(z) =
1

(1− z−1) ĥ(z)
(8)

which for n ≥ 1 and ĥ(z) ∈ HMon satisfies

x̂[n](z)ĥ(z) =

n−1∑
i=0

z−i + z−nŝ(z) (9)

where ŝ(z) =
∑∞
i=0 siz

−i with 1 > s0 ≥ s1 ≥ · · · ≥ 0.
Polynomial x̂[n](z) can be understood as the current which
maximizes the delivered charge while the peak sampled
electrode voltage does not exceed one volt. The coefficients
of x̂[n](z) can easily be found by solving a triangular set of
linear equations formed by equating like powers of z from
zero to − (n− 1) in (9). The desired optimal current ı̂opt(z)
which satisfies the charge constraint (4) is then given by

ı̂opt(z) =
Q

Ts

x̂[n](z)

x̂[n](1)
. (10)

The corresponding minimized peak sampled voltage, Vopt, is

Vopt =
Q

Tsx̂[n](1)
. (11)

The example in Fig. 1 is for n = 2.

III. RESULTS

This section contains results on the problem of determin-
ing the transfer function ĥ(z) for which the greatest peak
voltage reduction is possible.

A. Parametrization of ĥ(z)

While the monotonicity condition is sufficient to allow
direct calculation of ı̂opt(z) without solving a numerical
optimization, further restriction of the impedance TF is
necessary to disallow certain unrealistic ĥ(z) which can
arise.

Define HRC to be the set such that

ĥ(z) ∈ HRC ⇔ ĥ(z) = r0 +

m∑
j=1

rj
1− pjz−1

(12)

and ĥ(z) 6= r1
1− z−1

, ĥ(z) 6= r0 (13)

for some finite integer m ≥ 1 with all rj ≥ 0 and 0 < p1 <
p2 < · · · < pm ≤ 1.

Then, since HRC ⊂ HMon,

ĥ(z) ∈ HRC ⇒ ĥ(z) ∈ HMon. (14)

Also, it can be shown from (8)

ĥ(z) ∈ HRC ⇒ x̂(z) ∈ HRC . (15)

Thus for ĥ(z) ∈ HRC , the optimal current waveforms can
be described as “descending staircases”.

Simple series RC circuits (Fig. 2b) and parallel RC circuits
(Fig. 2c) arise in this work and it is useful to present the
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relation between the continuous-time parameters R, C, Ts
and the coefficients of ĥ(z). For a simple series RC circuit

ĥ(z) = R+
Ts

C

1− z−1
(16)

so that
Ts
RC

=
h1

h0 − h1
. (17)

For a simple parallel RC circuit

ĥ(z) =
R (1− p1)

1− p1z−1
(18)

where p1 = e−
Ts
RC so that

Ts
RC

= ln

(
h0
h1

)
. (19)

B. Figure of Merit M

A figure of merit M that we would like to be as large as
possible, and which indicates the amount of peak voltage re-
duction using a regularly sampled stepped current compared
with a constant current stimulation phase is given by

M(ĥ(z), n) =
V0
Vopt

, (20)

where V0 is the peak voltage due to a constant current
stimulation phase delivering charge Q over duration nTs and
is given by

V0 =
Q

nTs

n−1∑
i=0

hi (21)

and Vopt is the minimized peak voltage from (11). Clearly
M ≥ 1 and the reduction in peak voltage ∆V is

∆V = V0 − Vopt =
(M − 1)V0

M
. (22)

M has the following properties
1) Effect of Scaling ĥ(z): For any ĥ(z) ∈ HMon and for

any c > 0, we have

M(cĥ(z), n) = M(ĥ(z), n). (23)

2) Useful Expression for M:

M(ĥ(z), n) =
ĥ[n](1)x̂[n](1)

n
(24)

obtained by substituting (21) and (11) into (20).
This paper is concerned with the maximization of M with

respect to ĥ(z) ∈ HRC . For given n ∈ {1, 2, 3, . . .}, define
the optimal value of M as follows.

Definition 1:

M∗n = max
ĥ(z)∈HRC

M
(
ĥ(z), n

)
(25)

The optimizing ĥ[n](z) is defined as follows.
Definition 2:

ĥ[n]∗(z) = arg max
ĥ[n](z):ĥ(z)∈HRC

M
(
ĥ(z), n

)
(26)

C. Greatest peak voltage reduction for n = 2

Theorem 1: The maximum value of M2 with ĥ(z) ∈ HRC
is

M∗2 =
9

8
(27)

obtained with

ĥ[2]∗(z) = c

(
1 +

1

2
z−1
)

(28)

for any c > 0.
Proof: Set ĥ[2](z) = 1 + h1z

−1 where 0 < h1 < 1.
Then, from (9), x̂[2](z) = 1 + (1− h1) z−1. Next using (24)

M =
(1 + h1) (2− h1)

2
. (29)

Setting the derivative with respect to h1 to zero yields that
M has a maximum value of 9/8 at h1 = 1/2.
With M = 9/8, ∆V = V0/9. The result above for n = 2
has several properties which do not hold for all values of n.

Firstly, M∗2 = maxĥ(z)∈HMon
M
(
ĥ(z), 2

)
.

Secondly ĥ[2]∗(z) is proportional to ı̂opt(z).
Thirdly, many ĥ(z) ∈ HRC can be found for which

ĥ[2](z) = ĥ[2]∗(z). Examples include

ĥ(z) =
1

1− (1/2)z−1
, (30)

1

3
+

2/3

1− (3/4)z−1
, (31)

1

2
+

1/2

1− z−1
, (32)

1/2

1− (3/10)z−1
+

1/2

1− (7/10)z−1
. (33)

Equation (30) is the transfer function of a simple parallel RC
circuit; (31) is for a series-parallel RC circuit and (32) is for
a series RC circuit.

Using (19) the relation between Ts, R and C for the
optimal parallel circuit for n = 2 is

Ts
RC

= ln

(
h0
h1

)
= ln 2 ≈ 0.693. (34)

The corresponding relation for the optimal series circuit
for n = 2 (32) is, using (17),

Ts
RC

=
h1

h0 − h1
= 1. (35)

Thus the values of Ts/RC which maximize M2 are
different for the series and parallel circuits.

D. Greatest peak voltage reduction for n = 3

This problem is rather more difficult than that for n = 2.
Applying the technique used above gives

ĥ(z) = c
(
1 + (1/2)z−1 + (3/8)z−2

)
, (36)

x̂(z) = 1/c
(
1 + (1/2)z−1 + (3/8)z−2

)
(37)

with M = 75/64 ≈ 1.17188, but this is a saddle point, not a
maximum. On the other hand optimizing over ĥ(z) ∈ HMon

using
ĥ(z) = 1 + (1− ε)z−1 + εz−2 (38)

2987



gives
x̂(z) = 1 + εz−1 + (1− ε)2z−2. (39)

For small positive ε, ĥ(z) ∈ HMon but ĥ(z) /∈ HRC and
x̂(z) /∈ HMon. The corresponding M is M = 4/3− 2/3ε+
2/3ε2 so limε→0M = 4/3. The sought value of M lies
between these values and is given next.

Theorem 2: The maximum value of M3 with ĥ(z) ∈ HRC
is

M∗3 =
172 + 7

√
7

162
≈ 1.17605 (40)

obtained with

ĥ[3](z) = c

(
1 +

(
1 +
√

7
)

6
z−1 +

(
1 +
√

7
)2

36
z−2

)
(41)

or c

(
1 +

5−
√

7

6
z−1 +

5−
√

7

6
z−2

)
(42)

for any c > 0.
With M = M∗3 , ∆V ≈ 0.15V0. The only corresponding

ĥ(z) ∈ HRC are

ĥ(z) =
c(

1− (1+
√
7)

6 z−1
) , (43)

and c

(
1 +

5−
√
7

6 z−1

1− z−1

)
. (44)

Equation (43) is for a parallel circuit with,

Ts
RC

= ln

(
1

1+
√
7

6

)
≈ 0.498. (45)

Equation (44) is for a series circuit with,

Ts
RC

=
√

7− 2 ≈ 0.646. (46)

Thus, not only are the values of Ts/RC which maximize
M3 different for the series and parallel circuits, but also
the values of T/RC which maximize M2 and M3 for each
circuit configuration are different.

E. Simple series and parallel circuits

With ĥ(z) a parallel RC circuit as in (18), (8) gives

x̂(z) = 1 +
z−1 (1− p1)

1− z−1
, (47)

which has the form of a series RC transfer function as in (16).
Since the value of M is symmetric in ĥ[n](1) and x̂[n](1)
by (24), it follows that for any given integer n > 1, the
achievable set of values of M for series RC circuits and
parallel RC circuits are the same. Of particular interest, the
maximum value of M achievable for given n > 1 is the
same for a series or parallel circuit. These identical values
of M including maxima are attained at different values of
RC according to the circuit configuration.

TABLE I: Values of greatest reduction of peak electrode
voltage for a simple series or parallel RC circuit.

n Mn ∆V /V0 (%)
1 1 0
2 9/8 11.11
3 1.17605 15.00
4 1.20386 16.93
5 1.22136 18.12
10 1.25839 20.53
20 1.27801 21.75
50 1.29016 22.49
100 1.29427 22.74
200 1.29635 22.86

The maximization of M for a simple series or parallel
RC circuit is considered next. Substituting (18) and (47) into
(24), gives

Mn =
1

n

n+

n−1∑
j=1

pj1 − (n− 1)pn1

 . (48)

It can be shown that this polynomial expression in p1 has
exactly one maximum in the interval p1 ∈ (0, 1). This can be
found numerically for given n and is tabulated in Table I. We
conjecture that the values of Mn cannot be further maximised
with a more complicated RC circuit.

IV. CONCLUSIONS

The achievable reduction in peak voltage using a regularly
sampled stepped current, compared with a fixed current, to
deliver a given charge over a given duration into an RC
circuit has been investigated. For two-step currents, the best
achievable reduction is found to be V0/9 where V0 is the peak
voltage obtained with a fixed current and this can be achieved
using many different RC circuits including series-parallel,
series and parallel RC circuits. For three-step currents, the
best reduction is 0.15V0 achieved only with simple series
or parallel RC circuits. For any finite number of steps,
the achievable voltage reduction using a series RC circuit
and a parallel RC circuit are identical, but using different
RC values. This work contributes to an understanding of
the limitations in achievable peak voltage reduction to be
obtained driving an RC circuit with a descending staircase
current waveform and has application to the performance
achieved by neurostimulators using such waveforms.
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