
  

  

Abstract—This paper presents a real-time implementation of 
an intent recognition system on one transfemoral (TF) amputee. 
Surface Electromyographic (EMG) signals recorded from 
residual thigh muscles and the ground reaction forces/moments 
collected from the prosthetic pylon were fused to identify three 
locomotion modes (level-ground walking, stair ascent, and stair 
descent) and tasks such as sitting and standing. The designed 
system based on neuromuscular-mechanical fusion can 
accurately identify the performing tasks and predict intended 
task transitions of the patient with a TF amputation in 
real-time. The overall recognition accuracy in static states (i.e. 
the states when subjects continuously performed the same task) 
was 98.36%. All task transitions were correctly recognized 
80-323 ms before the defined critical timing for safe switch of 
prosthesis control mode. These promising results indicate the 
potential of designed intent recognition system for neural 
control of computerized, powered prosthetic legs. 

I. INTRODUCTION 
OWER limb amputation has a profound impact on the 
basic activities of the leg amputee’s daily life. Recent 

advancements in microcomputer-controlled, powered 
artificial legs have increased the number of functions that a 
prosthetic leg can perform [1-3]. The control of a powered 
artificial leg is mode-based [1, 3-4] since the dynamics of 
prosthesis depends on the user’s locomotion intent, such as 
level-ground walking and stair ascent/descent. Without 
knowing the user’s intent, the prosthetic leg cannot 
appropriately select the prosthetic control mode and smoothly 
transit the activities from one to another. Currently, the 
artificial legs are simply controlled by manually adjusting 
extra body motions or a remote key fob [5], which are both 
cumbersome. Accurately recognizing the leg amputee’s 
locomotion intent is required in order to realize the smooth 
and seamless control of prosthetic legs. 

A recent study reported an intent recognition approach 
which was achieved by using the mechanical measurements 
from the powered prosthetic legs [6]. Task transitions among 
level walking, sitting, and standing were investigated and 
tested on one patient with transfemoral (TF) amputation. The 
study reported 100% accuracy of recognizing the mode 
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transitions and only 6 misclassifications during a 570s testing 
period. However, over 500ms system delay was reported. In 
addition, except the level walking, no other locomotion 
modes were tested. Only using mechanical information may 
not be able to promptly recognize the transitions between 
different locomotion modes because this type of information 
may not be directly associated with the user’s intent. 
Alternatively, utilizing the neural control signal can enable 
the true intuitive control of the artificial limbs. 

Surface electromyographic (EMG) signals is as one of the 
major neural control sources for the powered prosthesis 
[7-10]. A phase-dependent EMG pattern recognition strategy 
was developed in our previous study [11]. The method was 
tested on eight able-bodied subjects and two subjects with TF 
amputation. About 90% accuracy was obtained when 
recognizing seven locomotion modes. The accuracy for user 
intent recognition was further improved by fusing  EMG 
signals measured from the residual thigh muscles and the 
ground reaction forces/moments collected from the prosthetic 
pylon, called neuromuscular-mechanical fusion [12]. The 
algorithm was tested in real-time to recognize three 
locomotion modes (level walking, stair ascent, and stair 
descent) on one able-bodied subject with recognition 
accuracy of 99.73%. 

Although the previous real-time testing on the able-bodied 
subject has demonstrated promising results, whether or not 
the designed intent recognition system can be used for neural 
control of artificial legs is unclear. This is because there might 
not be enough EMG recording sites available for 
neuromuscular information extraction due to the muscle loss 
in patients with leg amputations, which may cause the 
accuracy of user intent recognition to be inadequate for robust 
prosthetic control. Therefore, in order to evaluate the 
potential of our designed intent recognition system for 
prosthetic legs, it is essential to test the system on leg 
amputees in real-time. In this presented study, the designed 
system was tested and evaluated on one TF amputee subject. 
In addition, besides the previous tested tasks, another two 
tasks: sitting and standing, were included in this study. The 
results of this study will aid the further development of 
neural-controlled artificial legs.  

II. METHODS 

A. Architecture of Intent Recognition System  
The architecture of the intent recognition system based on 

neuromuscular-mechanical fusion is demonstrated in Fig.1. 
The multichannel EMG signals and mechanical 
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measurements from 6-degree of freedom (DOF) load cell are 
simultaneously sent into the system and then segmented into 
continuous, overlapped analysis windows. In each analysis 
window, EMG features are extracted from each channel; the 
mechanical features are computed from individual degree of 
freedom. Then, both the EMG and mechanical features are 
concatenated into one feature vector. The fused feature vector 
is then sent into a phase-dependent classifier. The 
phase-dependent classifier consists of multiple 
sub-classifiers, each one of which is established based on the 
data in one defined gait phase. The corresponding classifier is 
switched on based on the output of the designed gait phase 
detector. A post-processing algorithm is applied to the 
decision stream to produce smoothed decision continuously. 

B. Signal Pre-processing and Feature Extraction 
The raw EMG signals are band-pass filtered between 25 

and 450 Hz by an eighth-order Butterworth filter. The 
mechanical forces/moments are recorded from a 6-DOF load 
cell mounted on the prosthetic pylon and low-pass filtered 
with a 50 HZ cutoff frequency. Then, the signal streams are 
segmented by sliding analysis windows as shown in Fig. 2. In 
this study, the length of the analysis window is 150 ms and 
the window increment is 50 ms.  

Four time-domain (TD) features were extracted from the 
EMG signals: (1) the mean absolute value, (2) number of zero 
crossings, (3) number of slope sign changes, and (4) 
waveform length as described in [9]. For mechanical signals, 
the mean, minimum, and maximum values in each analysis 
window were extracted as the features.  

C. Phase-dependent Classification Strategy 
The phase-dependent classification strategy was applied in 

order to deal with the non-stationary EMG signals. Different 
from the gait phase cutting strategy employed in previous 
study [11], in which the discrete gait phases with constant 
200ms duration were used, continuously gait phases were 
used in this study. Four clinically gait phases are defined and 
applied (shown in Fig. 2). The real-time gait phase detection 
is implemented by monitoring the vertical ground reaction 
force (GRF) measured from the 6 DOF load cell mounted on 
the prosthetic leg. The detection criteria are shown in Fig. 3. 
The applied contact threshold is 2% of the subject’s weight. If 
one analysis window is located between two defined gait 
phases (e.g. the window W2 Fig. 2), the activated classifier is 
associated with the gait phase, in which it incorporates the 

data more than half of the window length (e.g. the classifier 
associated with the phase 2 should be used for the data in 
W2).  

D. Pattern Recognition Algorithm 
Support Vector Machine (SVM) with a nonlinear kernel 

was used in the design of the classifier to identify the 
locomotion intent of the subject. The reasons for choosing the 
nonlinear kernel based SVM are: (1) a nonlinear classifier 
might accurately classify the data when the linear boundaries 
among classes are difficult to define, and (2) SVM is more 
computationally efficient than other nonlinear classifiers such 
as ANN, which makes the real-time implementation feasible. 
In this study, a multiclass SVM with “one-against-one” 
(OAO) scheme [13] and C-Support Vectors Classification 
(C-SVC) [14] were used to identify different locomotion 
intent. The applied kernel function was the radial basis 
function (RBF). More details about SVM algorithm can be 
found in [13-14]. A 5-point majority vote scheme is applied to 
eliminate the erroneous decisions from the classifier.  

E. Participant and Experimental Setup 
     This study was conducted with Institutional Review Board 
(IRB) approval and informed consent of the subject. One 
female patient with unilateral transfemoral (TF) amputation 
was recruited. 
     Ten channels surface EMG signals from the residual thigh 
muscles were monitored. A 16-channel EMG system (Motion 
Lab System, US) was used to collect EMG signals from the 
subject. The EMG electrodes were embedded in customized 
gel liners (Ohio Willow Wood, US) for both comfort and 
reliable electrode-skin contact and placed at locations where 
strong EMG signals could be recorded. A ground electrode 

 
Fig. 1.  Architecture of locomotion intent recognition system based on 
neuromuscular-mechanical fusion. 
 

 
Fig. 2.  Continuous windowing scheme for real time pattern 
recognition and definition of gait phases. W1, W2 and W3 are 
continuous analysis windows. For each analysis window, a 
classification decision (D1, D2 and D3) is made ∆t (window 
increment) seconds later. τ is the processing time required of the 
classifier, where τ is no larger than ∆t. 

 
Fig. 3.  The real-time gait phase detection criteria. 

2998



  

was placed on the bony area near the anterior iliac spine. The 
EMG system filtered signals between 20 Hz and 450 Hz with a 
pass-band gain of 1000 and then sampled at 1000 Hz. 
Mechanical ground reaction forces and moments were 
measured by a six–degree of freedom (DOF) load cell (Bertec 
Corporation, OH, US) mounted on the prosthetic pylon. The 
six measurements from the load cell were also sampled at 
1000 Hz. All data recordings were synchronized and streamed 
into a PC through data collection system. The PC is Dell 
Precision 690 with 1.6GHz Xeon CPU and 2GB RAM. The 
real-time algorithm was implemented in MATLAB and the 
real-time locomotion predictions were displayed on a flat 
Plasma TV. In addition, the states of sitting and standing were 
indicated by a pressure measuring mat which was attached to 
the gluteal region of the subject. The experiment was 
videotaped to provide the ground truth for recognition system 
evaluation.  

F. Experimental Protocol 
During the experiment, the TF subject wore a hydraulic 

passive knee. Experimental sockets were duplicated from the 
subject’s ischial containment socket with suction suspension. 
The subject received instructions and practiced the tasks 
several times prior to experiment. 

Three locomotion modes including level-ground walking 
(W), stair ascent (SA), and stair descent (SD) and two tasks 
such as sitting (S) and standing (ST) were investigated in this 
study. The mode transitions included W→SA, SA→W, 
W→SD, SD→W, S→ST, ST→W, W→ST, and ST→S. The 
whole testing consisted of two sessions: training session and 
testing session. A training session was conducted before the 
testing to collect the training data for building the classifier. 
For each locomotion task (class), the training data was 
collected in an individual trial. At least three training trials for 
each task were required in order to collect enough training 
data. During the real-time testing session, the subject was 
asked to transit between the five different tasks continuously. 
Each trial lasted about 1 minute. Totally 15 real-time testing 
trials were conducted. For the subject’s safety, she was 
allowed to use hand railing. Rest periods were allowed 
between trials to avoid fatigue. 

G. Real-time Performance Evaluation 
 The real time performance of intent recognition system is 

evaluated by the following parameters. 
1) Classification Accuracy (CA) in the Static States: The 

static state is defined as the state of the subject continuously 
walking on the same type of terrain (level ground and stair) or 
performing the same task (sitting and standing). The 
classification accuracy in the static state is quantified by 
   %100×=

nsobservatioofnumberTotal
nsobservatioclassifiedcorrectlyofNumberCA      (1) 

2) The Number of Missed Mode Transitions: For the 
transition between different locomotion modes, the transition 
period starts from the initial prosthetic heel contact (phase 1 in 
Fig. 2) before switching the negotiated terrain and terminates 
at the end of single stance phase (phase 2 in Fig. 2) after the 

terrain switching; for the transition between different tasks 
such as sitting and standing, the transition period begins from 
the subject starting to switch the task and ends when the 
subject completely sit/stand. A transition is missed if no 
correct transition decision is made within the defined 
transition period. 

3) Prediction Time of the Transitions: The prediction time 
of a transition is defined as the elapsed time from the moment 
when the decisions of the classifier changes locomotion mode 
to the critical timing for the investigated task transitions. For 
the transitions between walking on level-ground and staircase 
(W→SA, SA→W, W→SD, and SD→W), the critical timing 
is defined as the beginning of the swing phase in the 
transitional period; for the transition ST→W, the critical 
timing is chosen as the beginning of the swing phase; for the 
transition W→ST, the beginning of initial double limb stance 
phase was regarded as the critical timing; for the transition 
S→ST and ST→S, the critical timing is the moment that the 
pressure under the gluteal region of the subject starts to drop to 
zero reading or exceed the zero reading. 

III. RESULTS 
The locomotion intent recognition system was tested on one 

TF amputee subject in real-time. The classification accuracy 
in static states was calculated across 15 real-time testing trials. 
The overall accuracy for recognizing the level-ground 
walking, stair ascent, stair descent, sitting, and standing was 
98.36%. For all of the 15 trials, all the mode transitions were 
accurately identified within the defined transition period. The 
prediction time for 8 types of transitions is shown in Table I. 

 
Fig. 4.  Real-time system performance in one representative testing 
trial. The white area denotes the static states period (level walking, 
stair ascent, stair descent, sitting, and standing); the gray area 
represents the transitional period. The red dash line indicates the 
critical timing for each transition. 

TABLE I. PREDICATION TIME OF MODE TRANSITIONS  
BEFORE CRITICAL TIMING 

Transition 
W
→
SA 

SA
→  
W 

W  
→ 
SD 

SD
→
W 

W
→ 
ST 

ST
→ 
W 

ST
→  
S 

S 
→ 
ST 

Estima-
tion 

Time 
(ms) 

135.6
± 

23.2 

143.3
± 

36.8 

123.2
± 

26.4 

92.9
± 

43.7 

80.4
± 

48.1 

152.
8± 

36.2 

323.
2± 

50.3 

90.0
± 

28.9 
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This result showed that the user intent for mode transitions can 
be accurately predicted about 80-323 ms before the critical 
timing for switching the control of prosthesis. 

The real-time performance of the intent recognition system 
in one representative trial is shown in Fig. 4. During the 56 
second real-time testing, totally three decision errors in static 
states were observed when the subject performed the stair 
ascent locomotion mode. These three errors were 
misclassified as level-ground walking. All the transitions are 
correctly recognized before the defined critical timing within 
the transition period. 

IV. DISCUSSION 
In this study, an intent recognition system based on 

neuromuscular-mechanical fusion was tested and evaluated in 
real-time to recognize the locomotion intent of a patient with a 
transfemoral (TF) amputation. Although the tested amputee 
only has a 84% of residual limb length, the designed system 
still produced a 98.36% recognition accuracy in static states 
and 92-143ms transition prediction time (for W→SA, 
SA→W, W→SD, and SD→W), similar to the static states 
accuracy (99.73%) and transition prediction time (112-197ms) 
received in our previous real-time testing on one able-bodied 
subject. This implies that the muscles in the amputee's residual 
limb still present different activation pattern among studied 
locomotion modes. These preliminary results imply the 
potential of the designed system for neural control of artificial 
legs. 

A phase-dependent classification strategy was applied in 
this designed system. Different from the previous study [11], 
in which the discrete gait phases with constant 200ms 
duration were used, continuously gait phases were used in 
this study. The continuous gait phase strategy makes the 
real-time implementation of the designed system feasible and 
practical. In addition, it is noteworthy that the gait phase is 
determined based on the vertical ground reaction force 
measured from a load cell mounted on the prosthetic pylon. 
This design of gait phase detector enables the system to be 
self-contained, which makes the integration of intent 
recognition system into prosthetic legs possible. 

Our current and future efforts include (1) investigation of 
the information carried by each sensor, (2) quantification of 
the performance of designed intent recognition system on 
more TF amputees with different residual length, and (3) 
study of the effects of errors of the intent recognition on the 
prosthetic leg control. 

V. CONCLUSION 
In this study, an intent recognition system based on 

neuromuscular-mechanical fusion was implemented in 
real-time on one patient with a transfemoral amputation. The 
real-time results showed that the designed system can 
recognize the performing locomotion mode with a high 
accuracy and predict the mode transitions of the patient with a 
TF amputation. The system achieved 98.36% accuracy for 
indentifying the locomotion modes in static states and showed 

fast response time (80-323ms) for predicting the task 
transitions. These preliminary promising results demonstrated 
potentials of designed intent recognition system to aid the 
future design of neural-controlled artificial legs and therefore 
improve the quality of life of leg amputees. 
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