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Abstract – The use of two-photon microscopy allows for 
imaging of deep neural tissue in vivo. This paper examines 
frequency-based analysis to two-photon calcium fluorescence 
images with the goal of deriving smooth tuning curves. We 
present a multifrequency analysis approach for improved 
extraction of calcium responses in episodic stimulation 
experiments, that is, when the stimulus is applied for a number 
of frames, then turned off for the next few frames, and so on. 
Episodic orientation stimulus was applied while recording from 
the primary visual cortex of an anesthetized mouse. The 
multifrequency model demonstrated improved tuning curve 
descriptions of the neurons. It also offers perspective regarding 
the characteristics of calcium fluorescence imaging of the brain. 

Keywords: Two-photon microscopy, calcium imaging, 
multifrequency analysis, visual cortex, tuning curve. 

I. INTRODUCTION 

ecently there has been increasing interest in the 
application of two-photon and multiphoton excitation 

microscopy in neural imaging. Two-photon microscopy as a 
technology offers several technical advantages over 
traditional confocal microscopy [1]. The use of confocal 
microscopy in vivo has been hindered by issues such as 
phototoxicity and photobleaching, limited depth imaging due 
to light scattering, and focal size. Fundamentally, these 
issues are related to the inefficient use of photons when 
imaging tissue – light is shined all over the sample, but only 
a small fraction is selected, focused, and collected. Because 
of the need to reduce the pinhole size to filter out stray 
photons, confocal microscopy suffers from a trade-off 
between resolution and image size. Furthermore, confocal 
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microscopy, which is based on single-photon excitation, 
induces excessive photon absorption by the tissue, making 
phototoxicity and photobleaching a significant issue. Since 
greater intensity is needed to penetrate into deep tissue, 
confocal microscopes need to balance depth with 
phototoxicity. 

The mechanism of two-photon excitation microscopy 
circumvents these difficulties by taking advantage of two 
low-energy photons to collide at the focal point, exciting the 
quantum state of the sample to a point equivalent to what a 
high-energy photon from a confocal microscope would 
excite to. The use of two low-energy photons to achieve the 
function of a single high-energy photon reduces 
phototoxicity, allowing imaging of far deeper tissue. Two-
photon microscopy circumvents or mitigates the issues faced 
by confocal microscopy and is ideal for imaging large and 
deep swaths of tissue in vivo, making it a prime technology 
for use in neuroscience. 

Calcium fluorescence is an effective analogue to voltage 
measurements, as [Ca2+] is a direct function of neural spike 
activity [2], [3]. The ability to observe calcium fluorescence 
over extended periods of time gives a novel way to monitor 
population activity. Furthermore, imaging calcium 
fluorescence using two-photon microscopy offers an 
unprecedented range and depth of viewing in vivo. Although 
the technology has recently been used, two-photon 
microscopy has yet to be characterized in an environment 
with episodic stimulation. Thus, the primary purpose of the 
paper is to develop a model tailored to episodic visual 
stimulation that characterizes calcium fluorescence as 
observed using two-photon microscopy. 

Current techniques use simple approaches such as bin 
averaging of relative fluorescence to construct tuning curves 
[4]. In fluorescence microscopy, it is particularly important 
to establish a structured model because of three reasons. The 
first reason is due to the high amount of error inherent in 
noninvasive imaging – due to the presence of tissue 
obstructing the path of photons reflecting from deep in the 
brain, there is high variability in the effective florescence 
detected by the camera. Two, the relatively slow sampling 
rate of scanning the layers of tissue leads to a larger 
proportion of the data being noise and hinders attempts at 
interpolation. Third, the concentrations of calcium inside 
neurons fluctuate nonlinearly with voltage and interact in 
complex ways with many other cellular processes [5]. 
Because of the low sampling rate combined with large noise, 
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it becomes important to apply a model that incorporates the 
structure of the data so as to more effectively distinguish 
between useful data and noise. 

The rest of the paper is organized as follows: Section 2 
describes the materials and experimental setup used. Section 
3 discusses the details of constructing a model based on the 
data, such as the algorithms used for parameter estimation. 
Section 4 examines the modeling effort, characterizes 
patterns observed, and evaluates the efficacy of the model. 
Section 5 offers concluding remarks on the characterization 
of the signal and gives direction for future work. 

II. MATERIALS AND METHODS 

All experimental procedures followed have been approved 
by the Massachusetts Institute of Technology Committee on 
Animal Care, and adhere to NIH guidelines for the Care and 
Use of Laboratory Animals. 

A. Animal and Microscope Setup 

Multiphoton imaging of the fluorescent calcium indicator 
Oregon Green Bapta (OGB) was performed in the visual 
cortex of anesthetized mice in vivo. Neurons were bulk-
loaded with OGB by intracortical injection of the AM-ester 
conjugated form of OGB using standard techniques. Imaging 
was performed with a custom-made two-photon laser 
scanning microscope [6]. Time series traces of images with a 
field-of-view of approximately 250×250 μm were collected 
at 1 Hz. The images were taken from cortical layer 2/3, 
which was readily distinguished from layer 1 on the basis of 
the relative density of astrocytes and neurons. Per set, the 
data were collected from 46 neurons in the V1 of a single 
mouse. Seven sets were collected in total. 

B. Stimulus Protocol 

Visual stimuli were delivered via a 17" LCD display 
placed 0.15 m away from the eyes of the animal. The stimuli 
were generated with the Matlab software package using the 
PsychoPhysics Toolbox [7]. The stimulation protocol 
consisted of square-wave gratings with 100% contrast which 
drifted at 3 Hz. The gratings alternated between appearing 
and disappearing, each occurring for 4 seconds. Data frames 
were recorded at 1 Hz. Between each appearance, the grating 
rotated 20°, from 0° to 340°. Thus, the stimulus rotates 340° 
in 144 seconds and the time series of the response of a 
neuron to this stimulus approximates a full orientation 
tuning curve. Prior to recording these responses, 10 image 
frames (10 seconds) were acquired in the absence of any 

visual stimulus to establish the baseline response level 
(Figure 1). 

Image files collected by two-photon microscopy were 
imported into Matlab and analyzed with custom routines. 
The cell bodies were identified by inspection and outlined 
manually. Only cells with fluorescence distinguishable from 
the neuropil were chosen for subsequent analysis. The 
fluorescence pixels were averaged over the area of the cell. 
Using an episodic stimulus scheme forms the foundation for 
the multifrequency model, which presupposes the periodic 
presence and absence of stimulus. This allows for a more 
informed analysis and modeling of the calcium flux in 
mouse visual cortex. 

 

III. STATISTICAL MODEL AND ANALYSIS 

Given that the goal is to construct tuning curves for the 
cells, it is important to find a mathematically relevant 
approach to model the fluorescence curve. Periodogram 
analysis of the time series shows that many of the cells 
exhibit an activity profile that suggests a sinusoidal structure 
composed of a few main frequencies (Figure 3). Thus, we 
used the following multi-frequency sinusoid model, 

 
ܨ  ൌ ∑ ௜ܣ sinሺω௜t ൅ φ௜ሻ

ே
௜ୀଵ ൅ κሺtሻ, (1) 

where the overlapping sinusoids form, due to constructive 
and destructive interference, a carrier-wave component 
representing the fundamental frequency (i=1) that the 
fluorescence signal oscillates with. Secondary (i=2,3) 
frequencies modulate the carrier frequency, creating the 
envelope that will be used to extract the tuning curve. Based 
on spectral analysis (Figure 3a), calculated by finding the 
power using mean-squared Fourier transform, we observed 
that most of the cellular signals were composed of two or 
three frequencies (N = 2, 3). These components can be seen 
as high-power peaks near the low-frequency section of the 
periodogram. κ(t) denotes the residuals that form the noise 
component, and will be used to examine the applicability of 
the multifrequency model to the data. 

The algorithm used for parameter estimation is a 
nonlinear least squares approach implemented using the 
Matlab curve fitting toolbox [8]. F is the measured 
fluorescence levels in (1), composed of the model-based 
predicted fluorescence with parameter values θ = {Ai, ωi, 
φi}. The system was solved for θ using an iterative nonlinear 
regression technique, where ી෡ was stepwise approached and 
each step was calculated by: 
 ી෡ ൌ ሺ۸୘۸ሻିଵ۸୘(2) .ܨ 

J is the Jacobian of the residual and F the step size to re-
calculate a more accurate iteration of  ી෡ . A trust-region 
estimation technique was used to calculate the step size of 
F and iteratively approach the optimal ી෡. The covariance of 
 ી෡ can be found by: 

Figure 1: Diagram of Experimental Setup. White boxes indicate 
no stimulus, black boxes indicate presence of stimulus. Each box 
represents 4 seconds, except for the first box which is 10 sec. The 
grid above visually represents the stimulus seen by mouse at each 
moment in time. 0° to 100° is shown – experimentally range 
extends to 360°. 
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 Covሺી෡ሻ ൌ ଶሺ۸୘۸ሻିଵ (3) 

where 2 = SSE/(n-1). SSE is the sum of the squares of the 
residuals, n is the number of data points, and values of the 
main diagonal in the covariance matrix Covሺી෡ሻ form the 
standard error of the parameters. 

IV. RESULTS AND DISCUSSION 

A. Fit Analysis 

The sinusoid model described well the overarching profile 
of the neuron responses, in particular the slowly oscillating 
envelope that is the response to the changing stimulus. The 
Pearson correlation coefficient was used to evaluate the 
coherence of the model to the data and was greater than 0.6 
for all cells, with some as high as 0.85. This shows that the 
model captured the majority of the stimulus-evoked response 
by the neurons. From Figure 2, the presence of many 
fluorescence measurements that measure below baseline 
fluorescence indicate that the information from multiphoton 
microscopy is littered with noise. Thus, it is important to use 
a more structured model to discern the stimulus-evoked 
component from the noise. 

Comparing the tuning curve predicted by the 
multifrequency approach against simple averaging of 
fluorescence at different angles is revealing about the 
character of the response of the neuron to episodic stimulus. 
As can be seen above, V1 neurons respond more 
consistently when gratings at specific angles are first seen 
(namely those from 0° to 180°), but this consistency 
deteriorates when the grating direction is seen again. This 
suggests an interesting hidden mechanism that affects the 
activity of these neurons, which should be investigated. 

It was found that, for most neurons, two or three sinusoids 
were adequate for an appropriate description of the data. As 
seen in Figure 3a, the periodogram of the original signal 

show two main stimulus-evoked frequencies at around f = 
0.125 Hz that were captured by the multifrequency model. 
The frequencies captured in the sinusoids were all low-
frequency components of the data equal to the low frequency 
of the stimulus change, the low sampling frequency, and the 
relatively slow speed of calcium flux in the neuron. Since 
one on-off cycle of the stimulus corresponded to an 
experimental period of 8 seconds, that the data reveals a 
strong frequency component at 0.125 Hz confirms that the 
main frequency was captured by the multifrequency model. 

B. Residual Analysis 

Based on characteristics of residuals, the multifrequency 
model seems appropriate. This implies that the model 
captured the major low-frequency components of the data 
and the noise captured the remaining, high-frequency 
stimulus-independent component of the signal. A 
periodogram of the raw fluorescence data show two high 
power frequencies at approximately f=0.125 Hz, 
corresponding to two major sinusoids that comprise the 
signal, while the residual has a far less pronounced profile of 
frequency peaks than the original signal and form a band of 
low-power noise captured in the residual.  

Fig. 2.  Comparison of tuning curves based on multifrequency versus
standard approach. Bold curve is the tuning curve predicted by the
multifrequency model. Standard approach calculated by directly
averaging fluorescence of cell body over different angle stimuli.  

Fig. 3.  (a) Top, periodogram of fluorescence signal;  
(b) Bottom, periodogram of residuals. The vertical line 
indicates f = 0.125 Hz, the frequency of the stimulus. 
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C. Tuning Curve 

As seen in Figure 2, reconstructing the tuning curve from 
the multifreqiency model presented a much less noisy tuning 
curve than from the unmodeled data. The first half-cycle of 
stimulus (angle rotations between 0° and 180°) exhibited a 
much more consistent and distinct rise in calcium levels 
compared to the second half-cycle (from 200° to 340°). This 
is most likely because the neuron is preferentially tuned to 
an orientation around 70°, but due to the symmetry 
possessed by a rotating grating, show sensitivity to an 
orientation of 250°. 

The asymmetry of the tuning curve illustrates an 
important principle that must be considered when 
constructing models for calcium fluorescence. Despite the 
apparent symmetry of a grating oriented at 70° or at 250°, 
these neurons do not respond symmetrically. Thus, any 
model designed to capture the response must be flexible 
enough to accommodate an asymmetrical neuron response to 
a symmetrical signal input. 

This poses difficulties because of the effect of noise upon 
the derivation of a tuning curve by any algorithm. Due to the 
observation made above, any model of the neurons in the 
visual cortex must be flexible enough to accommodate 
asymmetry. However, the problem arises when such 
asymmetry is not stimulus-derived, but due to a large noise 
component. The primary logic behind assuming symmetry 
when using a multifrequency model is to reduce the effect of 
large noise factors. A more flexible model that can 
incorporate more variability might erroneously capture noise 
as information. This is an issue that must be addressed when 
considering any model in a high-noise environment, such as 
in two-photon calcium fluorescence imaging. Thus, future 
models of multiphoton calcium fluorescence imaging will 
incorporate and quantify the complex modulations that 
calcium undergoes in the neuron. 

A comparison between the predicted modeled 
fluorescence against traditional processing techniques 
(Figure 2) show significant qualitative differences that point 
to the usefulness of the model to extract pertinent 
information. Traditional methods would not have detected 
significant difference between baseline the midpoint 
orientation between baseline and highest activity. However, 
it is known that V1 cells possess partial sensitivity to off-
target orientations and have a range of tuning widths, which 
is captured in the model [9]. Thus, qualitatively the model 
captures the intended activity of the neuron and agrees with 
the results derived from voltage-based models. 

V. CONCLUSION 

The paper examined the issue of understanding and 
modeling multiphoton microscopy and presented a model for 
intelligent smoothing of two-photon calcium fluorescence 
imaging data. Using our multifrequency model, stimulus-
evoked responses from neurons in the visual cortex were 
accurately captured in the presence of large noise. The 

characteristics of the model and noise were examined, 
leading to greater insight regarding the character of calcium 
fluorescence imaging and of VI neurons and offering insight 
into future models of multiphoton fluorescence microscopy. 
The most promising direction to take this approach is to 
elaborate on more sophisticated models that take advantage 
of situational factors such as orientation maps or cortical 
thickness. With a more sophisticated model that incorporates 
noise due to structure of the cortex into account, a more 
powerful method could be constructed that would further 
make two-photon calcium fluorescence microscopy a viable 
neuroimaging method. 
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Fig. 3.  Unprocessed (top) and modeled 
(bottom) fluorescence responses at (a) baseline, 
(b) 40° orientation, and (c) 80° orientation. 
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