
  

  

Abstract—Conditioning raw neural signals recorded through 
microelectrode arrays implanted in the brain is an important 
first step before information extraction can take place. This 
paper reports on the design and implementation of a 
programmable and fully implantable microsystem that fulfills 
this purpose. The system design builds on our earlier work that 
relies on a sparse representation of the neural signals to combat 
the limited telemetry bandwidth when wireless communication 
with the external world is sought. The system has a multimodal 
processing capability to support a wide range of scenarios in 
real experimental conditions. A transmission link with 
rate-dependent compression and spike sorting strategy is shown 
to preserve information fidelity. At 32 channels sampled at 25 
kHz, the power consumption of the system is 5.19 mW and has 
been implemented on a 5mm×5mm nano-FPGA, bringing its 
performance within the implantable power-size constraints for 
clinical applications. 

I. INTRODUCTION 
EURAL ensemble recordings with penetrating 
microelectrode arrays have been shown to yield superior 

information content about motor intent in subjects with 
severe motor and communication deficits compared to other 
signals acquired with noninvasive devices [1-4]. One major 
obstacle that precludes the extraction of this information in 
awake, behaving subjects is the need to be tethered to large 
size, computationally pristine recording equipment that are 
typically found in laboratory settings. Clinical viability of 
these devices, however, requires developing fully implantable 
neural recording microsystems capable of wireless data and 
power telemetry. Data reduction early in the data stream is 
one potential solution, provided the information in the neural 
signals is not compromised.  

Our previous work has demonstrated that critical 
information is preserved when the neural data is sparsely 
represented, for example, using a discrete wavelet transform 
(DWT) [5, 6]. A key element to enable rapid translation of 
these findings to clinical use is to implement this 
representation on low cost hardware platforms that can be 
programmed “on the fly”, for example, to recalibrate the 
system in the face of an unreliable wireless telemetry link or 
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changes in neural signal characteristics [6, 7].  
Herein, we report some recent results on the development 

of a system comprising these features. Specifically, the 
system transmits the most biologically relevant information 
from 32 channels sampled at 25 kHz per channel over a 1 
Mbps wireless link. The system is highly scalable, has the 
advantage of switching between different modes of operation 
during run time, and has been fully implemented on an 
implantable nano-FGPA. 

II. SYSTEM ARCHITECTURE  
Figure 1 illustrates the system architecture. It constitutes 

one of three blocks in a Neural Interface Node (NIN) 
currently under development [8]. The analog front-end 
amplifies and filters the neural signals before time-to-digital 
conversion takes place at the input of the neuroprocessor. The 
output of the neuroprocessor is fed to an RF block that 
manages the wireless data telemetry of the extracted 
information to the outside world, and manages the inductive 
powering of the NIN through pairing the NIN coil with an 
outside nearby coil.  

         

 

Fig. 1. System Architecture 

The neuroprocessor is responsible for extracting 
information from the neural signals as well as the 
management of the NIN operation, including selection of the 
operational mode, the bandwidth and gain of analog 
conditioning circuits, the selection of channels of interest, 
power, data communication and parameter updates. As 
illustrated in Figure 1, the neuroprocessor supports three 
operational modes through externally programmable 
registers: 1) Monitoring mode (red), where single channel 
raw data are transmitted sequentially at full bandwidth to 
permit estimating compression/spike sorting threshold 
parameters off chip; 2) Compression mode (green), in which 
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only the sparse coefficient representation of 32 channel data 
is transmitted after run length encoded (RLE); and 3) Sensing 
mode (blue), where only spike time stamps extracted on 
active channels are transmitted after DWT-based spike 
sorting is implemented with an alternative threshold selection 
scheme [8-9].  

A. VLSI Architecture 
As shown in Figure 2, the neuroprocessor [9] includes a 

DWT module (green dashed frame), a global controller (blue 
dashed frame) and a communication module (red dashed 
frame). The DWT module has a Finite State Machine (FSM) 
based controller for controlling timing and sequence 
operations, a lifting DWT based Computation Core (CC), five 
memory modules for incoming data, coefficients, 
intermediate CC products and intermediate values for 
multichannel multilevel interleaved DWT computations 
[10-11].  

The global controller consists of a command decoder, one 
threshold memory and four registers, and is used to decode 
the received command into analog bandwidth and gain 
control parameters and update the thresholds used for both the 
compression and sensing modes. It also selects the channel 
used for the monitoring mode, manages selection of 
operational mode and the half-duplex wireless 
communication with external module. 

 The communication module is mainly composed of two 
alternant communication buffers to ensure no neural 
information loss over the bandwidth limited wireless link. It 
organizes the different data outputs for three operational 
modes, and also packetizes the closed-loop power status to 
update the level of externally supplied power so that the 
voltage level in NIN is kept constant, even in case of coil 
misalignment or mismatch in the inductive power link. 

 

 

Fig. 2. VLSI architecture of the neuroprocessor 

B. Data and Command Communication Protocol 
Bidirectional communication and low power consumption 

is a key design specification to optimize the data and 
command communication protocol. A half-duplex 
communication protocol is used to wirelessly transfer neural 
information and power status data from the NIN, and receive 

clock, power, and command from outside to conserve 
power/bandwidth and reconfigure system operations.  

As shown in Figure 3.a, to realize multi-modal 
functionality, the uplink data packetizer organizes the 
processed neural data in three different structured frames with 
overheads for synchronization and error detection, where 
every frame length is 840 bits (N1=N2=3N3-3=93, where N1, 
N2 and N3 are the byte number of neural data for three modes, 
respectively). This amounts to 8.45 % of frame overhead, 
with 7.62 % contributed by the header and ender.  The power 
byte here is used to monitor and relay the power level 
received by the NIN, and close the loop of the wireless power 
supply from outside to the NIN to obtain a stable power 
supply, regardless of the misalignment or distance change 
between the coils [10]. The two timer bytes in monitoring and 
compression modes are used to record the timestamp of the 
first data in the packet frame. Similarly, the channel node byte 
in monitoring and compression modes is used to mark the 
source of the first data sample in this packet frame. The timer 
together with channel node information makes recovering the 
neural information feasible in case of packet loss. 

The downlink command frame to NIN is 80 bits and 
includes command to switch between different NIN modes, 
control the analog conditioning circuits such as bandwidth 
and gain, select desirable output channel for monitoring mode, 
and update the threshold values for either compression or 
sorting mode. At a transmission frequency of 1 Mbps, the 
840-bit data packet takes 0.84 ms for transmission, and the 
80-bit command packet takes 0.080 ms. Thus, assuming that 
the packet propagation delay and the idle time between 
receipt and transmission are negligible, the shortest time it 
can afford to wait for the incoming data to be packetized and 
filled into the communication buffers is 0.92 ms. In the 
current design, two 840-bit communication buffers are used 
in order to avoid data overflowing. At any given time, only 
one buffer is active for receiving incoming data, and the other 
acts as a reserve buffer after sending the data received during 
its active period. 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Packet format for data and command frame, (a) Uplink data 
transmission from NIN; (b) Downlink command transmission to NIN 
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III. NANO-FPGA PROTOTYPING  
The AGLN 250 nano-FPGA from Actel was chosen to 

implement the designed neuroprocessor due to its superior 
features including programmability, low-power and small 
size (5mm×5mm). Most importantly, it also includes memory 
blocks that reduce unnecessary usage of system gates. Figure. 
4.a summarize the memory demands needed, while Table I 
summarizes the resource allocation of the entire 
neuroprocessor on this FPGA.  
 

TABLE  I. HARDWARE RESOURCES OF FINAL DESIGN ON AGLN 250 
 

Type of Resources Resource of AGLN250 Nano-FPGA 
Total Used Percentage 

Embedded RAM Blocks 8 8 100 % 
Versa Tile (D-flip-flops) 6144 4328 70.44 % 

PLL 1 1 100 % 
Chip Global 6 6 100 % 

 
For the design of 32-channel, 4-level DWT, and sampling 

rate of 25 ksps per channel, the total power consumption of 
the neuroprocessor was 5.14 mW, evaluated with the Smart 
Power tool in Actel Designer, which matched closely with the 
measured 5.19 mW. The detailed distribution of power 
budget is plotted in Figure 4.b. The time analyzer in Actel 
Designer reported 53.50 ns of critical path. 

 

               
 

(a) 

 
(b) 

Fig. 4. Distributions of: (a) hardware resource and (b) power consumption  

IV. RESULTS 
To investigate the optimal bit precision that preserves 

information fidelity in the neural signals as a wired system, 
the Receiver Operating Characteristics (ROC) for different 
bit precisions of the neural data is shown in Figure 5. Spike 
sorting threshold parameters are selected to maximize the 
area under the ROC graphs. An 8-bit resolution has a very 
similar performance to a 10-bit precision and hence was 
chosen. 

Figure 6.a qualitatively demonstrates some examples of 
original and reconstructed waveforms. Only 20% and 50 % of 

the coefficients were used to obtain the reconstructions 
shown. In Figure 6.b, this is also quantified by the degree of 
separability between the different neuronal clusters in the 
feature space. The class separability is defined as the 
Euclidean distance between spike waveforms of two neurons 
represented in the compression domain by a user-defined 
number of coefficients [6]. 

       
Fig. 5. ROC curves for different bit precisions 

 

 

 

        (a) 

       
           (b) 

 
Fig. 6. (a) Neural signals at different compression rates; (b) Spike class 

separability vs. compression rate (modified from [6]). 
 

In the compression mode, Figure 7 shows the statistical 
distribution of the time needed for 50 data frames to fill the 
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communication buffer, with an average value of value of 4.85 
ms. The minimal time taken to fill a packet was recorded to be 
1.25 ms, which is within the allowed time limit of 0.92 ms 
described in Section II.B, thereby effectively avoiding data 
overflow.  
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Fig. 7 Statistical distribution of the filling time of 50 data frames in the 

compression mode 
 
 

For the sensing mode, the minimum filling time of the 
communication buffer was found to be 3.15 ms and the 
average was measured to be 26.02 ms as shown in Figure 8, 
which are much larger than the filling time of the 
compression mode. This demonstrates that compression and 
spike sorting on chip with this neuroprocessor design is 
feasible and desirable, minimizes system latency and results 
in orders of magnitude savings in transmission bandwidth as 
expected.  
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    Fig. 8 Statistical distribution of the filling time of 50 data frames in the 

sensing mode 
 

V. CONCLUSION 
In this paper, we reported on a fully implantable and 

multimodal neuroprocessor with bidirectional 
communication capability for full programmability. The 
implementation of the neuroprocessor consumes 5.19 mW 
power to process 32 channels of electrode data at 25 ksps and 
8-bit resolution on a 5mm×5mm nano-FPGA, which brings 

its power density to 20.76 mW/cm2. This conforms to the 
power density limits for clinical grade implants, estimated to 
be ~62 mW/cm2 [11]. The system is highly scalable, 
programmable and cost effective, making it well suited for 
basic neuroscience research as well as clinical Brain Machine 
Interface applications. 
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