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Abstract— Neural oscillations are important features in a
working central nervous system, facilitating efficient commu-
nication across large networks of neurons. To better study the
role of these oscillations in various cognitive processes, and to
be able to build clinical applications around them, accurate
and precise estimations of the instantaneous frequency and
phase are required. Here, we present methodology based on
autoregressive modeling to accomplish this in real time. This
allows the targeting of stimulation to a specific phase of a
detected oscillation. Using intracranial EEG recorded from two
patients performing a Sternberg memory task, we characterize
our algorithm’s phase-locking performance on physiologic theta
oscillations.

I. INTRODUCTION

Neural oscillations are fundamental to the normal func-
tioning of a working central nervous system. There are dis-
tinct oscillators in various brain regions that are governed by
different physiological mechanisms. For example, prominent
oscillations in the theta frequency range can be detected
in the hippocampus and entorhinal cortex of rats during
locomotion, orienting, conditioning, or while they are per-
forming learning or memory tasks [1], as well as in humans
performing various memory and spatial navigation tasks [2],
[3]. Because of the role of hippocampal theta oscillations in
modulating long-term potentiation (LTP), they are thought to
be an important component of memory encoding [4].

The phase of these neural oscillations can possibly be
used to store and carry information [5], [6], as well as to
modulate physiological activity such as LTP. For example,
stimulation applied to the perforant pathway at the peak of
hippocampal theta rhythms induced LTP while stimulation
applied at the trough induced long-term depression [7]. Theta
also serves to temporally organize the firing activity of single
neurons involved in memory encoding [8], [9], such that
the degree to which single spikes are phase-locked to the
theta-frequency field oscillations is predictive of how well
the corresponding memory item is transferred to long-term
memory [3]. Such temporal patterns of neural activity are
potentially important considerations in the design of future
neural interface systems. For example, it is plausible that
electrical stimulation phase-locked to theta oscillations could
either disrupt or augment memory encoding, leading to
potentially useful clinical applications.
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Here, we present methods to accurately estimate the
instantaneous frequency and phase of an intracranial EEG
oscillation signal in real time. At the core of our methodology
is an autoregressive model of the EEG signal, which we use
to both optimize the bandwidth of the narrow-band signal
using estimations of the power spectral density, as well as to
perform time-series forward-predictions. These two steps in
conjunction allows us to make precise and accurate estimates
of the instantaneous frequency and phase of an oscillation,
which we then use to target output stimulation pulses to a
specific phase of the oscillation.

II. METHODS

A. Algorithm Overview

The ultimate goal of our algorithm is to be able to calculate
the instantaneous frequency and phase of a neurophysiolog-
ical signal at a specific point in time with the necessary
accuracy and precision to be able to deliver phase-locked
stimulation pulses in real time. The algorithm is comprised
of several sequential steps depicted in Fig. 1.

B. Autoregressive Model

Autoregressive (AR) modeling provides a robust method
of estimating the power spectrum for short (1–2 s) EEG
segments, and is less susceptible to spurious results [10].
One issue that is of critical importance in the successful
application of AR modeling is the selection of the model
order [10], [11]. Because the estimated optimal order varies
by the criterion, the sampling rate, and the characteristics of
the input data, order selection ultimately depends upon the
resulting performance of the system. Thus, it is empirically
determined.

C. Frequency Band Optimization

The estimated AR spectrum of a data sequence is a
continuous function of frequency and can be evaluated at
any given frequency, which is why AR spectral estimation
is great at discriminating narrow-band peaks, such as those
produced by brain oscillations. Here, the AR model order
becomes important in that a low model order will give an
overly smoothed spectrum while an overly high order will
result in spurious peaks.

To isolate a particular brain oscillation and accurately
determine its instantaneous phase, we must perform band-
pass filtering around its central frequency. Instantaneous
phase only becomes accurate and meaningful if the filter
bandwidth is sufficiently narrow [12]. Using predetermined
cutoff frequencies may lead to either an insufficiently narrow
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Fig. 1: Overview of algorithm. (a) Raw iEEG signal, where
t0 represents the current time in a real-time acquisition
process. (b) Analyze the last 1-second segment of iEEG
signal. (c) Use autoregressive spectral estimation to calculate
the power spectral density in the 1-second segment. The
frequency band optimization procedure is carried out. (d) The
1-second segment is bandpass filtered in both the forward and
backward directions, based on the optimized passband. (e)
Using the bandpass-filtered signal from tstart to tstop, time-
series forward predictions (shown in red) are made using
the autoregressive model. (f) The instantaneous phase and
frequency of this forward-predicted segment are calculated.
(g) Using the instantaneous phase and frequency of the
forward-predicted segment at t0, a time delay from t0 is
calculated. Output stimulation is triggered after this time
delay (shown in red). Overlaid is the raw iEEG signal from
(b) plus some additional time.

band, where noise and extraneous signals will interfere with
the brain oscillation signal, or an overly narrow band, in
which frequency components of the brain oscillation are lost
due to crossing over the range of the passband. Therefore,
we developed an adaptive method that optimizes the cutoff
frequencies using the AR power spectrum estimate, where
the power contained in the optimized band does not fall
below a specified threshold level. First, for the raw EEG
signal, we calculate the total power contained in a particular

frequency band of interest:

P (fL, fH) =

∫ fH

fL

SAR(f) df. (1)

We then iteratively increase fL or decrease fH by a specified
step-size δf until

P (f̂L, f̂H) ≤ λP (fL, fH), (2)

where f̂L and f̂H are the optimized passband cutoff frequen-
cies, and λ is a fractional multiplier. For every iteration:

(f̂L, f̂H) =

{
(fL + δf , fH) if SAR(fL) < SAR(fH)
(fL, fH − δf ) if SAR(fL) ≥ SAR(fH)

.

(3)
The selection of a value for λ defines the tradeoff between
an insufficiently narrow band (λ close to 1) and an overly
narrow band (λ close to 0). Here, we set λ to be greater
than 0.5, with the justification that we are ensuring the
majority of the power contained within the frequency band
of interest is contained within the bounds of f̂L and f̂H . It is
important to note that the optimal value of λ may be context-
dependent. We are using the assumption that for a particular
brain oscillation, there is a certain characteristic frequency,
and some amount of variance about that central frequency,
rather than the assumption that the oscillation is comprised
of many component frequencies. Using this relative measure
λ, we are able to ensure that the filter passband is locally
optimized within each time segment. A bandpass filter with
cutoff bands f̂L and f̂H is then applied to the original EEG
segment. To prevent phase distortion, we use a zero-phase
digital filter that processes input signals in both the forward
and reverse directions.

D. Time-Series Forward Prediction

Once we have filtered a signal through the optimized
bandpass filter, we can calculate the instantaneous frequency
and phase. However, when operating in real time, the relevant
f(t) and φ(t) are its values at the current time, which we will
define as t0. Using a zero-phase filter, distortions will occur
near t0 as only the signal in the reverse direction is available.
To make more accurate estimates of f(t0) and φ(t0), we
make use of an autoregressive model. For a given EEG
segment, we use the bandpass filtered signal from Xtstart to
Xtstop to predict a signal of length 2(t0 − tstop) from tstop
(see Fig. 1). Therefore, the midpoint of this predicted signal
corresponds to t0. We predict a signal of length 2(t0− tstop)
to ensure a smooth and continuous instantaneous phase
function at t0, so that the calculation of the instantaneous
frequency and phase at t0 will not be affected by the edge
effects of the Hilbert transform. The Hilbert transform will
be used to calculate the instantaneous phase and frequency
(see section 2E). An example of its edge effect can be seen
in the ripples in Fig. 1e.

E. Instantaneous Phase and Frequency

The instantaneous phase is calculated from the complex
analytic signal, a combination of the original data and
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its Hilbert transform. The instantaneous frequency is then
calculated using the derivative of the instantaneous phase.

In our algorithm, the two steps that are based on autore-
gressive modeling, frequency band optimization and time-
series forward prediction, are strategies to attempt to max-
imize the accuracy of instantaneous phase and frequency
estimations.

F. Implementation

Our algorithm was implemented in MATLAB 7.11 (Math-
Works, Natick, MA).

The maximum signal segment analysis rate (which trans-
lates to the maximum stimulation rate) for the determination
of stimulation timing should be greater than the frequency
of the oscillation of interest. However, if this frequency is
set too high, then spurious outputs will be generated. For
theta oscillations, we have set this frequency to be 10 Hz,
corresponding to a time window shift every 100 ms. For
every period of this analysis cycle, f(t0) and φ(t0) are
calculated, and the time delay until the output stimulation
is delivered is calculated by the following formula:

tdelay =
1

f(t0)

(ϕ− φ(t0) + 2π) mod 2π

2π
, (4)

where ϕ is the desired phase of the output stimulation (ϕ = 0
corresponds to the waveform peak, while ϕ = π corresponds
to the trough). Note that 2π is added as the output of φ lies
in the interval (−π, π].

G. Patients and Data

We assessed phase-locking accuracy on physiologic theta
oscillations from two epilepsy patients performing a memory
task (a version of the Sternberg task adapted from [13], with
four list items and a probe item), who had been surgically
implanted with subdural electrodes. Informed consent was
obtained from the subjects prior to the surgical implantation.
Subject 1 had electrodes covering the frontal, parietal and
subtemporal areas (73 channels). Subject 2 had electrodes
covering the middle, inferior and subtemporal regions (38
channels). We obtained 40 trials from subject 1 and 11 trials
from subject 2. Both the correct and incorrect trials were
pooled for this analysis. Intracranial (iEEG) signals were
recorded from grids and strips electrode arrays.

We optimized the algorithm parameters on the first trial for
subject 1 with the single electrode with the largest average
theta power. We then used these parameters to perform
simulation runs on all electrode channels in subject 1 for all
subsequent trials (trials 2–40). Phase-locking performance
was assessed at each electrode channel (1–73) collectively
over trials 2–40. These same parameters were then tested
on subject 2 at each electrode channel (1–38) and assessed
collectively over all trials (1–11).

H. Assessment of Phase-Locking Performance

We are interested in two measures of phase-locking
accuracy. The first is the difference between the mean
stimulation phase φ̄ and the desired phase ϕ. The second

is the variance of stimulation phases. Because not every
channel may provide a suitable input signal, we looked at
phase-locking performance in the context of the electrode
channel’s theta power level and theta temporal coherence.
The temporal coherence τc is calculated by determining the
length of time it takes for the amplitude of the autocorrelation
function of the theta-bandpassed signal to decrease to half
the maximal value at t = 0. As an example, for a 1-second
truncated sine wave segment, τc = 0.5 seconds. We placed
electrode channels into four bins: high theta power/high
theta coherence, high theta power/low theta coherence, low
theta power/high theta coherence, and low theta power/low
theta coherence. Electrode channels that did not produce
stimulation output were discarded. High theta power was
defined as being greater than the median theta power across
all remaining electrodes, whereas high theta coherence was
defined as being greater than the midpoint of the range of
τc values. The theta power for each electrode was averaged
over trials 2–40 for subject 1 and trials 1–11 for subject 2.

I. Optimizing Parameters Using a Genetic Algorithm

There are multiple parameters in our algorithm that require
selection and optimization. Because these variables interact
in non-obvious ways, depending on, most of all, the char-
acteristics of the input data, we sought to optimize these
parameters simultaneously using a genetic algorithm. The
five parameters to be optimized include the AR order p, λ
for frequency band optimization, the bandpass filter order
and type, and the length t0 − tstop for time-series forward
prediction. Fitness was measured by phase-locking accuracy
and precision, as well as a low AR model order.

III. RESULTS

A. Sternberg Task

For subject 1, in the first trial, electrode 45 had the
largest average theta power (2300 µV2), and thus the algo-
rithm parameters were optimized on this data. The resulting
optimized parameters are: AR order 22, λ = 0.79, 2nd
order Chebyshev filter, and t0 − tstop = 0.05. Results of
simulation runs on trials 2–40 are shown in Fig. 2a. Not
all electrode channels had equal phase-locking performance.
Channels with both high theta power and high theta temporal
coherence resulted in the best performance. The median theta
power averaged across trials 2–40 was 570 µV2, and the theta
temporal coherence τc averaged across trials 2–40 ranged
from 0.0812 to 0.1308 seconds.

The same parameters from subject 1 were tested on subject
2. Out of 38 electrodes, 26 generated output stimulation, and
for these electrodes, the median theta power averaged across
trials 1–11 was 1500 µV2 and the theta coherence averaged
across trials 1–11 ranged from 0.0690 to 0.1087 seconds.
Results are shown in Fig. 2b. Here, electrode channels with
both high theta power and high theta temporal coherence
resulted in the best performance. Furthermore, it appears that
high theta temporal coherence is more important than high
theta power.
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Fig. 2: Phase-locking performance on signals recorded
during the Sternberg task (φ̄, error bars represent the
95% confidence interval for φ̄). Electrodes are sorted by
high theta power/high theta coherence (blue squares), high
theta power/low theta coherence (red triangles), low theta
power/high theta coherence (green circles), and low theta
power/low theta coherence (yellow crosses). (a) For subject
1, signals from 73 out of 73 electrodes generated output
stimulation cumulatively over 39 trials (2–40). (b) For subject
2, signals from 26 out of 38 electrodes generated output
stimulation cumulatively over 11 trials (1-11).

These results show that while both high theta power and
high theta temporal coherence are important in determining
performance, high theta temporal coherence is the more
important factor. For example, while channel 18 in subject
2 exhibited very large theta power (5740 µV2), it exhibited
relatively low theta temporal coherence (0.0806 seconds),
and thus performed very poorly. On the other hand, channel
20 exhibited lower theta power (1508 µV2), but had higher
theta temporal coherence (0.1087 seconds), which explains
its better performance.

IV. DISCUSSION

We have presented here a system for brain oscillation
detection and phase-locked stimulation. Though we have
tested our system only on theta oscillations, this system
can conceivably be used to also study oscillations in other
frequency bands. Autoregressive modeling provides an ex-
cellent method to estimate the instantaneous frequency and
phase, from which we can accurately deliver phase-locked
stimulation in real time.

Optimal selection of the AR model order and other al-
gorithm parameters are important considerations. Because
these parameters interact with each other and the input
data, we used a genetic algorithm method to optimize these
parameters simultaneously. This optimization procedure re-
quires intensive computational resources, and thus cannot

be done in real time. It must be manually performed on
a separate experimental trial (or set of trials) before the
algorithm can be deployed. Here, in subject 1 performing the
Sternberg task, we performed this optimization on the first
trial and used the parameters derived from this optimization
on subsequent trials. In subject 2, we used the parameters
that were optimized on subject 1. In reality, it may be
more appropriate to optimize the parameters on a patient-
by-patient basis, as there will be subtle differences in the
physiology between patients, such as in the dominant theta
frequencies, timing, and spatial characteristics. For example,
hippocampi will differ between patients, especially in the
presence of underlying pathology such as mesial temporal
sclerosis. In addition, our system may further be improved
upon in the future by adopting an online adaptive strategy
in selecting algorithm parameters, rather than performing an
offline optimization procedure prior to online operation.
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